Psyduck - 可達鴨 之 鴨力山大2


Server : LiteSpeed
System : Linux premium217.web-hosting.com 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
User : alloknri ( 880)
PHP Version : 8.1.34
Disable Function : NONE
Directory :  /opt/alt/python37/lib64/python3.7/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //opt/alt/python37/lib64/python3.7/csv.py
"""
csv.py - read/write/investigate CSV files
"""

import re
from _csv import Error, __version__, writer, reader, register_dialect, \
                 unregister_dialect, get_dialect, list_dialects, \
                 field_size_limit, \
                 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
                 __doc__
from _csv import Dialect as _Dialect

from collections import OrderedDict
from io import StringIO

__all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
           "Error", "Dialect", "__doc__", "excel", "excel_tab",
           "field_size_limit", "reader", "writer",
           "register_dialect", "get_dialect", "list_dialects", "Sniffer",
           "unregister_dialect", "__version__", "DictReader", "DictWriter",
           "unix_dialect"]

class Dialect:
    """Describe a CSV dialect.

    This must be subclassed (see csv.excel).  Valid attributes are:
    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
    lineterminator, quoting.

    """
    _name = ""
    _valid = False
    # placeholders
    delimiter = None
    quotechar = None
    escapechar = None
    doublequote = None
    skipinitialspace = None
    lineterminator = None
    quoting = None

    def __init__(self):
        if self.__class__ != Dialect:
            self._valid = True
        self._validate()

    def _validate(self):
        try:
            _Dialect(self)
        except TypeError as e:
            # We do this for compatibility with py2.3
            raise Error(str(e))

class excel(Dialect):
    """Describe the usual properties of Excel-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\r\n'
    quoting = QUOTE_MINIMAL
register_dialect("excel", excel)

class excel_tab(excel):
    """Describe the usual properties of Excel-generated TAB-delimited files."""
    delimiter = '\t'
register_dialect("excel-tab", excel_tab)

class unix_dialect(Dialect):
    """Describe the usual properties of Unix-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\n'
    quoting = QUOTE_ALL
register_dialect("unix", unix_dialect)


class DictReader:
    def __init__(self, f, fieldnames=None, restkey=None, restval=None,
                 dialect="excel", *args, **kwds):
        self._fieldnames = fieldnames   # list of keys for the dict
        self.restkey = restkey          # key to catch long rows
        self.restval = restval          # default value for short rows
        self.reader = reader(f, dialect, *args, **kwds)
        self.dialect = dialect
        self.line_num = 0

    def __iter__(self):
        return self

    @property
    def fieldnames(self):
        if self._fieldnames is None:
            try:
                self._fieldnames = next(self.reader)
            except StopIteration:
                pass
        self.line_num = self.reader.line_num
        return self._fieldnames

    @fieldnames.setter
    def fieldnames(self, value):
        self._fieldnames = value

    def __next__(self):
        if self.line_num == 0:
            # Used only for its side effect.
            self.fieldnames
        row = next(self.reader)
        self.line_num = self.reader.line_num

        # unlike the basic reader, we prefer not to return blanks,
        # because we will typically wind up with a dict full of None
        # values
        while row == []:
            row = next(self.reader)
        d = OrderedDict(zip(self.fieldnames, row))
        lf = len(self.fieldnames)
        lr = len(row)
        if lf < lr:
            d[self.restkey] = row[lf:]
        elif lf > lr:
            for key in self.fieldnames[lr:]:
                d[key] = self.restval
        return d


class DictWriter:
    def __init__(self, f, fieldnames, restval="", extrasaction="raise",
                 dialect="excel", *args, **kwds):
        self.fieldnames = fieldnames    # list of keys for the dict
        self.restval = restval          # for writing short dicts
        if extrasaction.lower() not in ("raise", "ignore"):
            raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
                             % extrasaction)
        self.extrasaction = extrasaction
        self.writer = writer(f, dialect, *args, **kwds)

    def writeheader(self):
        header = dict(zip(self.fieldnames, self.fieldnames))
        self.writerow(header)

    def _dict_to_list(self, rowdict):
        if self.extrasaction == "raise":
            wrong_fields = rowdict.keys() - self.fieldnames
            if wrong_fields:
                raise ValueError("dict contains fields not in fieldnames: "
                                 + ", ".join([repr(x) for x in wrong_fields]))
        return (rowdict.get(key, self.restval) for key in self.fieldnames)

    def writerow(self, rowdict):
        return self.writer.writerow(self._dict_to_list(rowdict))

    def writerows(self, rowdicts):
        return self.writer.writerows(map(self._dict_to_list, rowdicts))

# Guard Sniffer's type checking against builds that exclude complex()
try:
    complex
except NameError:
    complex = float

class Sniffer:
    '''
    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
    Returns a Dialect object.
    '''
    def __init__(self):
        # in case there is more than one possible delimiter
        self.preferred = [',', '\t', ';', ' ', ':']


    def sniff(self, sample, delimiters=None):
        """
        Returns a dialect (or None) corresponding to the sample
        """

        quotechar, doublequote, delimiter, skipinitialspace = \
                   self._guess_quote_and_delimiter(sample, delimiters)
        if not delimiter:
            delimiter, skipinitialspace = self._guess_delimiter(sample,
                                                                delimiters)

        if not delimiter:
            raise Error("Could not determine delimiter")

        class dialect(Dialect):
            _name = "sniffed"
            lineterminator = '\r\n'
            quoting = QUOTE_MINIMAL
            # escapechar = ''

        dialect.doublequote = doublequote
        dialect.delimiter = delimiter
        # _csv.reader won't accept a quotechar of ''
        dialect.quotechar = quotechar or '"'
        dialect.skipinitialspace = skipinitialspace

        return dialect


    def _guess_quote_and_delimiter(self, data, delimiters):
        """
        Looks for text enclosed between two identical quotes
        (the probable quotechar) which are preceded and followed
        by the same character (the probable delimiter).
        For example:
                         ,'some text',
        The quote with the most wins, same with the delimiter.
        If there is no quotechar the delimiter can't be determined
        this way.
        """

        matches = []
        for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
                      r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',   # ,".*?"
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
            matches = regexp.findall(data)
            if matches:
                break

        if not matches:
            # (quotechar, doublequote, delimiter, skipinitialspace)
            return ('', False, None, 0)
        quotes = {}
        delims = {}
        spaces = 0
        groupindex = regexp.groupindex
        for m in matches:
            n = groupindex['quote'] - 1
            key = m[n]
            if key:
                quotes[key] = quotes.get(key, 0) + 1
            try:
                n = groupindex['delim'] - 1
                key = m[n]
            except KeyError:
                continue
            if key and (delimiters is None or key in delimiters):
                delims[key] = delims.get(key, 0) + 1
            try:
                n = groupindex['space'] - 1
            except KeyError:
                continue
            if m[n]:
                spaces += 1

        quotechar = max(quotes, key=quotes.get)

        if delims:
            delim = max(delims, key=delims.get)
            skipinitialspace = delims[delim] == spaces
            if delim == '\n': # most likely a file with a single column
                delim = ''
        else:
            # there is *no* delimiter, it's a single column of quoted data
            delim = ''
            skipinitialspace = 0

        # if we see an extra quote between delimiters, we've got a
        # double quoted format
        dq_regexp = re.compile(
                               r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
                               {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)



        if dq_regexp.search(data):
            doublequote = True
        else:
            doublequote = False

        return (quotechar, doublequote, delim, skipinitialspace)


    def _guess_delimiter(self, data, delimiters):
        """
        The delimiter /should/ occur the same number of times on
        each row. However, due to malformed data, it may not. We don't want
        an all or nothing approach, so we allow for small variations in this
        number.
          1) build a table of the frequency of each character on every line.
          2) build a table of frequencies of this frequency (meta-frequency?),
             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
             7 times in 2 rows'
          3) use the mode of the meta-frequency to determine the /expected/
             frequency for that character
          4) find out how often the character actually meets that goal
          5) the character that best meets its goal is the delimiter
        For performance reasons, the data is evaluated in chunks, so it can
        try and evaluate the smallest portion of the data possible, evaluating
        additional chunks as necessary.
        """

        data = list(filter(None, data.split('\n')))

        ascii = [chr(c) for c in range(127)] # 7-bit ASCII

        # build frequency tables
        chunkLength = min(10, len(data))
        iteration = 0
        charFrequency = {}
        modes = {}
        delims = {}
        start, end = 0, chunkLength
        while start < len(data):
            iteration += 1
            for line in data[start:end]:
                for char in ascii:
                    metaFrequency = charFrequency.get(char, {})
                    # must count even if frequency is 0
                    freq = line.count(char)
                    # value is the mode
                    metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
                    charFrequency[char] = metaFrequency

            for char in charFrequency.keys():
                items = list(charFrequency[char].items())
                if len(items) == 1 and items[0][0] == 0:
                    continue
                # get the mode of the frequencies
                if len(items) > 1:
                    modes[char] = max(items, key=lambda x: x[1])
                    # adjust the mode - subtract the sum of all
                    # other frequencies
                    items.remove(modes[char])
                    modes[char] = (modes[char][0], modes[char][1]
                                   - sum(item[1] for item in items))
                else:
                    modes[char] = items[0]

            # build a list of possible delimiters
            modeList = modes.items()
            total = float(min(chunkLength * iteration, len(data)))
            # (rows of consistent data) / (number of rows) = 100%
            consistency = 1.0
            # minimum consistency threshold
            threshold = 0.9
            while len(delims) == 0 and consistency >= threshold:
                for k, v in modeList:
                    if v[0] > 0 and v[1] > 0:
                        if ((v[1]/total) >= consistency and
                            (delimiters is None or k in delimiters)):
                            delims[k] = v
                consistency -= 0.01

            if len(delims) == 1:
                delim = list(delims.keys())[0]
                skipinitialspace = (data[0].count(delim) ==
                                    data[0].count("%c " % delim))
                return (delim, skipinitialspace)

            # analyze another chunkLength lines
            start = end
            end += chunkLength

        if not delims:
            return ('', 0)

        # if there's more than one, fall back to a 'preferred' list
        if len(delims) > 1:
            for d in self.preferred:
                if d in delims.keys():
                    skipinitialspace = (data[0].count(d) ==
                                        data[0].count("%c " % d))
                    return (d, skipinitialspace)

        # nothing else indicates a preference, pick the character that
        # dominates(?)
        items = [(v,k) for (k,v) in delims.items()]
        items.sort()
        delim = items[-1][1]

        skipinitialspace = (data[0].count(delim) ==
                            data[0].count("%c " % delim))
        return (delim, skipinitialspace)


    def has_header(self, sample):
        # Creates a dictionary of types of data in each column. If any
        # column is of a single type (say, integers), *except* for the first
        # row, then the first row is presumed to be labels. If the type
        # can't be determined, it is assumed to be a string in which case
        # the length of the string is the determining factor: if all of the
        # rows except for the first are the same length, it's a header.
        # Finally, a 'vote' is taken at the end for each column, adding or
        # subtracting from the likelihood of the first row being a header.

        rdr = reader(StringIO(sample), self.sniff(sample))

        header = next(rdr) # assume first row is header

        columns = len(header)
        columnTypes = {}
        for i in range(columns): columnTypes[i] = None

        checked = 0
        for row in rdr:
            # arbitrary number of rows to check, to keep it sane
            if checked > 20:
                break
            checked += 1

            if len(row) != columns:
                continue # skip rows that have irregular number of columns

            for col in list(columnTypes.keys()):

                for thisType in [int, float, complex]:
                    try:
                        thisType(row[col])
                        break
                    except (ValueError, OverflowError):
                        pass
                else:
                    # fallback to length of string
                    thisType = len(row[col])

                if thisType != columnTypes[col]:
                    if columnTypes[col] is None: # add new column type
                        columnTypes[col] = thisType
                    else:
                        # type is inconsistent, remove column from
                        # consideration
                        del columnTypes[col]

        # finally, compare results against first row and "vote"
        # on whether it's a header
        hasHeader = 0
        for col, colType in columnTypes.items():
            if type(colType) == type(0): # it's a length
                if len(header[col]) != colType:
                    hasHeader += 1
                else:
                    hasHeader -= 1
            else: # attempt typecast
                try:
                    colType(header[col])
                except (ValueError, TypeError):
                    hasHeader += 1
                else:
                    hasHeader -= 1

        return hasHeader > 0
Name
Size
Permissions
Options
__pycache__
--
drwxr-xr-x
asyncio
--
drwxr-xr-x
collections
--
drwxr-xr-x
concurrent
--
drwxr-xr-x
config-3.7m
--
drwxr-xr-x
ctypes
--
drwxr-xr-x
curses
--
drwxr-xr-x
dbm
--
drwxr-xr-x
distutils
--
drwxr-xr-x
email
--
drwxr-xr-x
encodings
--
drwxr-xr-x
ensurepip
--
drwxr-xr-x
html
--
drwxr-xr-x
http
--
drwxr-xr-x
idlelib
--
drwxr-xr-x
importlib
--
drwxr-xr-x
json
--
drwxr-xr-x
lib-dynload
--
drwxr-xr-x
lib2to3
--
drwxr-xr-x
logging
--
drwxr-xr-x
multiprocessing
--
drwxr-xr-x
pydoc_data
--
drwxr-xr-x
site-packages
--
drwxr-xr-x
sqlite3
--
drwxr-xr-x
test
--
drwxr-xr-x
unittest
--
drwxr-xr-x
urllib
--
drwxr-xr-x
venv
--
drwxr-xr-x
wsgiref
--
drwxr-xr-x
xml
--
drwxr-xr-x
xmlrpc
--
drwxr-xr-x
__future__.py
4.981 KB
-rw-r--r--
__phello__.foo.py
0.063 KB
-rw-r--r--
_bootlocale.py
1.759 KB
-rw-r--r--
_collections_abc.py
25.805 KB
-rw-r--r--
_compat_pickle.py
8.544 KB
-rw-r--r--
_compression.py
5.215 KB
-rw-r--r--
_dummy_thread.py
5.886 KB
-rw-r--r--
_markupbase.py
14.256 KB
-rw-r--r--
_osx_support.py
19.141 KB
-rw-r--r--
_py_abc.py
6.041 KB
-rw-r--r--
_pydecimal.py
223.33 KB
-rw-r--r--
_pyio.py
89.469 KB
-rw-r--r--
_sitebuiltins.py
3.042 KB
-rw-r--r--
_strptime.py
24.906 KB
-rw-r--r--
_sysconfigdata_dm_linux_x86_64-linux-gnu.py
30.595 KB
-rw-r--r--
_sysconfigdata_m_linux_x86_64-linux-gnu.py
27.93 KB
-rw-r--r--
_threading_local.py
7.045 KB
-rw-r--r--
_weakrefset.py
5.546 KB
-rw-r--r--
abc.py
5.449 KB
-rw-r--r--
aifc.py
32.045 KB
-rw-r--r--
antigravity.py
0.466 KB
-rw-r--r--
argparse.py
93.137 KB
-rw-r--r--
ast.py
12.541 KB
-rw-r--r--
asynchat.py
11.063 KB
-rw-r--r--
asyncore.py
19.646 KB
-rw-r--r--
base64.py
19.915 KB
-rwxr-xr-x
bdb.py
30.986 KB
-rw-r--r--
binhex.py
13.627 KB
-rw-r--r--
bisect.py
2.497 KB
-rw-r--r--
bz2.py
12.119 KB
-rw-r--r--
cProfile.py
6.106 KB
-rwxr-xr-x
calendar.py
24.244 KB
-rw-r--r--
cgi.py
34.229 KB
-rwxr-xr-x
cgitb.py
11.736 KB
-rw-r--r--
chunk.py
5.308 KB
-rw-r--r--
cmd.py
14.512 KB
-rw-r--r--
code.py
10.373 KB
-rw-r--r--
codecs.py
35.757 KB
-rw-r--r--
codeop.py
6.128 KB
-rw-r--r--
colorsys.py
3.969 KB
-rw-r--r--
compileall.py
13.465 KB
-rw-r--r--
configparser.py
53.011 KB
-rw-r--r--
contextlib.py
24.183 KB
-rw-r--r--
contextvars.py
0.126 KB
-rw-r--r--
copy.py
8.648 KB
-rw-r--r--
copyreg.py
6.853 KB
-rw-r--r--
crypt.py
3.268 KB
-rw-r--r--
csv.py
15.801 KB
-rw-r--r--
dataclasses.py
48.359 KB
-rw-r--r--
datetime.py
84.516 KB
-rw-r--r--
decimal.py
0.313 KB
-rw-r--r--
difflib.py
82.415 KB
-rw-r--r--
dis.py
19.422 KB
-rw-r--r--
doctest.py
102.109 KB
-rw-r--r--
dummy_threading.py
2.749 KB
-rw-r--r--
enum.py
34.222 KB
-rw-r--r--
filecmp.py
9.6 KB
-rw-r--r--
fileinput.py
14.282 KB
-rw-r--r--
fnmatch.py
3.961 KB
-rw-r--r--
formatter.py
14.788 KB
-rw-r--r--
fractions.py
23.195 KB
-rw-r--r--
ftplib.py
34.783 KB
-rw-r--r--
functools.py
32.16 KB
-rw-r--r--
genericpath.py
4.797 KB
-rw-r--r--
getopt.py
7.313 KB
-rw-r--r--
getpass.py
5.854 KB
-rw-r--r--
gettext.py
21.452 KB
-rw-r--r--
glob.py
5.506 KB
-rw-r--r--
gzip.py
20.153 KB
-rw-r--r--
hashlib.py
9.311 KB
-rw-r--r--
heapq.py
22.478 KB
-rw-r--r--
hmac.py
6.364 KB
-rw-r--r--
imaplib.py
52.043 KB
-rw-r--r--
imghdr.py
3.706 KB
-rw-r--r--
imp.py
10.289 KB
-rw-r--r--
inspect.py
114.878 KB
-rw-r--r--
io.py
3.435 KB
-rw-r--r--
ipaddress.py
71.854 KB
-rw-r--r--
keyword.py
2.203 KB
-rwxr-xr-x
linecache.py
5.205 KB
-rw-r--r--
locale.py
76.358 KB
-rw-r--r--
lzma.py
12.679 KB
-rw-r--r--
macpath.py
5.979 KB
-rw-r--r--
mailbox.py
76.811 KB
-rw-r--r--
mailcap.py
8.854 KB
-rw-r--r--
mimetypes.py
20.992 KB
-rw-r--r--
modulefinder.py
22.495 KB
-rw-r--r--
netrc.py
5.436 KB
-rw-r--r--
nntplib.py
42.077 KB
-rw-r--r--
ntpath.py
21.816 KB
-rw-r--r--
nturl2path.py
2.523 KB
-rw-r--r--
numbers.py
10.004 KB
-rw-r--r--
opcode.py
5.688 KB
-rw-r--r--
operator.py
10.608 KB
-rw-r--r--
optparse.py
58.956 KB
-rw-r--r--
os.py
37.013 KB
-rw-r--r--
pathlib.py
49.149 KB
-rw-r--r--
pdb.py
61.04 KB
-rwxr-xr-x
pickle.py
56.635 KB
-rw-r--r--
pickletools.py
89.082 KB
-rw-r--r--
pipes.py
8.707 KB
-rw-r--r--
pkgutil.py
20.958 KB
-rw-r--r--
platform.py
45.893 KB
-rwxr-xr-x
plistlib.py
29.989 KB
-rw-r--r--
poplib.py
14.613 KB
-rw-r--r--
posixpath.py
15.401 KB
-rw-r--r--
pprint.py
20.395 KB
-rw-r--r--
profile.py
21.967 KB
-rwxr-xr-x
pstats.py
26.675 KB
-rw-r--r--
pty.py
4.651 KB
-rw-r--r--
py_compile.py
7.813 KB
-rw-r--r--
pyclbr.py
14.782 KB
-rw-r--r--
pydoc.py
103.395 KB
-rw-r--r--
queue.py
11.093 KB
-rw-r--r--
quopri.py
7.095 KB
-rwxr-xr-x
random.py
26.911 KB
-rw-r--r--
re.py
14.947 KB
-rw-r--r--
reprlib.py
5.144 KB
-rw-r--r--
rlcompleter.py
6.931 KB
-rw-r--r--
runpy.py
11.679 KB
-rw-r--r--
sched.py
6.291 KB
-rw-r--r--
secrets.py
1.99 KB
-rw-r--r--
selectors.py
18.126 KB
-rw-r--r--
shelve.py
8.327 KB
-rw-r--r--
shlex.py
12.793 KB
-rw-r--r--
shutil.py
40.967 KB
-rw-r--r--
signal.py
2.073 KB
-rw-r--r--
site.py
21.069 KB
-rw-r--r--
smtpd.py
33.908 KB
-rwxr-xr-x
smtplib.py
43.401 KB
-rwxr-xr-x
sndhdr.py
6.92 KB
-rw-r--r--
socket.py
26.825 KB
-rw-r--r--
socketserver.py
26.292 KB
-rw-r--r--
sre_compile.py
26.242 KB
-rw-r--r--
sre_constants.py
7.009 KB
-rw-r--r--
sre_parse.py
38.238 KB
-rw-r--r--
ssl.py
44.429 KB
-rw-r--r--
stat.py
5.265 KB
-rw-r--r--
statistics.py
20.167 KB
-rw-r--r--
string.py
11.293 KB
-rw-r--r--
stringprep.py
12.614 KB
-rw-r--r--
struct.py
0.251 KB
-rw-r--r--
subprocess.py
70.946 KB
-rw-r--r--
sunau.py
17.944 KB
-rw-r--r--
symbol.py
2.092 KB
-rwxr-xr-x
symtable.py
7.108 KB
-rw-r--r--
sysconfig.py
23.867 KB
-rw-r--r--
tabnanny.py
11.151 KB
-rwxr-xr-x
tarfile.py
90.503 KB
-rwxr-xr-x
telnetlib.py
22.593 KB
-rw-r--r--
tempfile.py
26.104 KB
-rw-r--r--
textwrap.py
18.952 KB
-rw-r--r--
this.py
0.979 KB
-rw-r--r--
threading.py
48.129 KB
-rw-r--r--
timeit.py
13.177 KB
-rwxr-xr-x
token.py
3.675 KB
-rw-r--r--
tokenize.py
26.397 KB
-rw-r--r--
trace.py
28.226 KB
-rwxr-xr-x
traceback.py
22.888 KB
-rw-r--r--
tracemalloc.py
16.676 KB
-rw-r--r--
tty.py
0.858 KB
-rw-r--r--
types.py
9.665 KB
-rw-r--r--
typing.py
55.115 KB
-rw-r--r--
uu.py
7.106 KB
-rw-r--r--
uuid.py
28.826 KB
-rw-r--r--
warnings.py
19.609 KB
-rw-r--r--
wave.py
17.803 KB
-rw-r--r--
weakref.py
21.004 KB
-rw-r--r--
webbrowser.py
23.159 KB
-rwxr-xr-x
xdrlib.py
5.774 KB
-rw-r--r--
zipapp.py
7.358 KB
-rw-r--r--
zipfile.py
79.193 KB
-rw-r--r--