Psyduck - 可達鴨 之 鴨力山大2


Server : LiteSpeed
System : Linux premium217.web-hosting.com 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
User : alloknri ( 880)
PHP Version : 8.1.34
Disable Function : NONE
Directory :  /opt/alt/python311/lib64/python3.11/__pycache__/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //opt/alt/python311/lib64/python3.11/__pycache__/statistics.cpython-311.pyc
�

!A?hY���v�UdZgd�ZddlZddlZddlZddlZddlmZddlm	Z	ddl
mZmZddl
mZmZddlmZmZmZmZmZmZmZmZdd	lmZdd
lmZddlmZmZmZed��Z Gd
�de!��Z"d�Z#d?d�Z$d�Z%d�Z&d�Z'd�Z(d@d�Z)de*de*de*fd�Z+dej,j-zdzZ.e*e/d<de*de*de0fd�Z1de*de*de	fd�Z2d �Z3d?d!�Z4d"�Z5d?d#�Z6d$�Z7d%�Z8d&�Z9dAd(�Z:d)�Z;d*�Z<d+d,d-�d.�Z=d?d/�Z>d?d0�Z?d?d1�Z@d?d2�ZAd3�ZBd4�ZCd5�ZDed6d7��ZEd8d9�d:�ZFd;�ZG	dd<lHmGZGn#eI$rYnwxYwGd=�d>��ZJdS)Ba�

Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  ==================================================
Function            Description
==================  ==================================================
mean                Arithmetic mean (average) of data.
fmean               Fast, floating point arithmetic mean.
geometric_mean      Geometric mean of data.
harmonic_mean       Harmonic mean of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
multimode           List of modes (most common values of data).
quantiles           Divide data into intervals with equal probability.
==================  ==================================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Statistics for relations between two inputs
-------------------------------------------

==================  ====================================================
Function            Description
==================  ====================================================
covariance          Sample covariance for two variables.
correlation         Pearson's correlation coefficient for two variables.
linear_regression   Intercept and slope for simple linear regression.
==================  ====================================================

Calculate covariance, Pearson's correlation, and simple linear regression
for two inputs:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance(x, y)
0.75
>>> correlation(x, y)  #doctest: +ELLIPSIS
0.31622776601...
>>> linear_regression(x, y)  #doctest:
LinearRegression(slope=0.1, intercept=1.5)


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

)�
NormalDist�StatisticsError�correlation�
covariance�fmean�geometric_mean�
harmonic_mean�linear_regression�mean�median�median_grouped�median_high�
median_low�mode�	multimode�pstdev�	pvariance�	quantiles�stdev�variance�N��Fraction)�Decimal)�groupby�repeat)�bisect_left�bisect_right)�hypot�sqrt�fabs�exp�erf�tau�log�fsum)�reduce)�mul)�Counter�
namedtuple�defaultdict�@c��eZdZdS)rN)�__name__�
__module__�__qualname__���1/opt/alt/python311/lib64/python3.11/statistics.pyrr�s�������Dr1rc���d}t��}|j}i}|j}t|t��D]B\}}||��tt|��D]\}}	|dz
}||	d��|z||	<��Cd|vr|d}
t|
��rJ�n+td�|�	��D����}
tt|t��}||
|fS)a�_sum(data) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 0.25])
    (<class 'float'>, Fraction(19, 2), 5)

    Some sources of round-off error will be avoided:

    # Built-in sum returns zero.
    >>> _sum([1e50, 1, -1e50] * 1000)
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    r�Nc3�<K�|]\}}t||��V��dS�Nr��.0�d�ns   r2�	<genexpr>z_sum.<locals>.<genexpr>�s.����@�@�t�q�!�H�Q��N�N�@�@�@�@�@�@r1)
�set�add�getr�type�map�_exact_ratio�	_isfinite�sum�itemsr&�_coerce�int)�data�count�types�	types_add�partials�partials_get�typ�valuesr:r9�total�Ts            r2�_sumrQ�s��@
�E��E�E�E��	�I��H��<�L��t�T�*�*�1�1���V��	�#������f�-�-�	1�	1�D�A�q��Q�J�E�&�,�q�!�,�,�q�0�H�Q�K�K�	1��x��������U�#�#�#�#�#�#��@�@�x�~�~�/?�/?�@�@�@�@�@���w��s�#�#�A�
�u�e��r1c�"�����&t��fd�|D����\}}}||�|fSd}t��}|j}tt��}tt��}t|t��D]S\}	}
||	��tt|
��D]-\}�|dz
}|�xx|z
cc<|�xx||zz
cc<�.�T|std��x}�n�d|vr|dx}�t|��rJ�nitd�|���D����}td�|���D����}
||
z||zz
|z}||z�tt|t��}||�|fS)a3Return the exact mean and sum of square deviations of sequence data.

    Calculations are done in a single pass, allowing the input to be an iterator.

    If given *c* is used the mean; otherwise, it is calculated from the data.
    Use the *c* argument with care, as it can lead to garbage results.

    Nc3�,�K�|]}|�z
x��zV��dSr6r0)r8�x�cr9s  ��r2r;z_ss.<locals>.<genexpr>�s0�����<�<�!�1�q�5�j�a�A�-�<�<�<�<�<�<r1rr4c3�<K�|]\}}t||��V��dSr6rr7s   r2r;z_ss.<locals>.<genexpr>�s.����@�@�D�A�q��!�Q���@�@�@�@�@�@r1c3�BK�|]\}}t|||z��V��dSr6rr7s   r2r;z_ss.<locals>.<genexpr>�s4����D�D�t�q�!�(�1�a��c�"�"�D�D�D�D�D�Dr1)rQr<r=r*rFrr?r@rArrBrCrDr&rE)rGrUrP�ssdrHrIrJ�sx_partials�sxx_partialsrMrNr:�sx�sxxr9s `            @r2�_ssr]�s�����	�}��<�<�<�<�<�t�<�<�<�<�<�
��3���3��5�!�!�
�E��E�E�E��	�I��c�"�"�K��s�#�#�L��t�T�*�*�%�%���V��	�#������f�-�-�	%�	%�D�A�q��Q�J�E���N�N�N�a��N�N�N���O�O�O�q�1�u�$�O�O�O�O�	%��
��1�+�+���a�a�	
��	�	��d�#�#��a��S�>�>�!�!�!�!�
�@�@�K�,=�,=�,?�,?�@�@�@�
@�
@���D�D�|�/A�/A�/C�/C�D�D�D�D�D���s�{�R�"�W�$��-����J���w��s�#�#�A�
�s�A�u��r1c�t�	|���S#t$rtj|��cYSwxYwr6)�	is_finite�AttributeError�math�isfinite)rTs r2rBrB�sF�� ��{�{�}�}���� � � ��}�Q������ ���s��7�7c��|tus
Jd���||ur|S|tus	|tur|S|tur|St||��r|St||��r|St|t��r|St|t��r|St|t��rt|t��r|St|t��rt|t��r|Sd}t||j|jfz���)z�Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    zinitial type T is boolz"don't know how to coerce %s and %s)�boolrF�
issubclassr�float�	TypeErrorr-)rP�S�msgs   r2rErEs
��
�D�=�=�=�2�=�=�=�	�A�v�v�q���C�x�x�1��9�9�a�x��C�x�x��(��!�Q���"��(��!�Q���"��(��!�S���$�1�H��!�S���$�1�H��!�X����:�a��#7�#7�����!�U����
�1�h� 7� 7����
.�C�
�C�1�:�q�z�2�2�
3�
3�3r1c�"�	|���S#t$rYn+ttf$rt	|��rJ�|dfcYSwxYw	|j|jfS#t$r(dt|��j�d�}t|���wxYw)z�Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    Nzcan't convert type 'z' to numerator/denominator)
�as_integer_ratior`�
OverflowError�
ValueErrorrB�	numerator�denominatorr?r-rg)rTris  r2rArAs���<��!�!�#�#�#���
�
�
����:�&�����Q�<�<�����4�y�����������Q�]�+�+������Q�T�!�W�W�%5�Q�Q�Q����n�n�����s ��
A
�%A
�	A
�
A�2Bc��t|��|ur|St|t��r|jdkrt}	||��S#t
$r:t|t��r#||j��||j��zcYS�wxYw)z&Convert value to given numeric type T.r4)r?rerFrorfrgrrn)�valuerPs  r2�_convertrrMs����E�{�{�a������!�S����e�/�1�4�4�����q��x�x��������a��!�!�	��1�U�_�%�%���%�*;�(<�(<�<�<�<�<��	���s�
A�AB�	B�negative valuec#�FK�|D]}|dkrt|���|V��dS)z7Iterate over values, failing if any are less than zero.rN)r)rN�errmsgrTs   r2�	_fail_negrv_sA����
�����q�5�5�!�&�)�)�)�������r1r:�m�returnc�N�tj||z��}|||z|z|kzS)zFSquare root of n/m, rounded to the nearest integer using round-to-odd.)ra�isqrt)r:rw�as   r2�_integer_sqrt_of_frac_rtor|gs.��	
�
�1��6���A���!��A���
��r1���_sqrt_bit_widthc���|���|���z
tz
dz}|dkrt||d|zz��|z}d}nt|d|zz|��}d|z}||zS)z1Square root of n/m as a float, correctly rounded.r}rr4���)�
bit_lengthrr|)r:rw�qrnros     r2�_float_sqrt_of_fracr�ss���
�����!�,�,�.�.�	(�?�	:�q�@�A��A�v�v�-�a��a�!�e��<�<��A�	����-�a�2��6�k�1�=�=�	��A�2�g���{�"�"r1c��|dkr|std��S||}}t|��t|��z���}|���\}}|���}|���\}}d|z||zdzz|||z||zzdzzkr|S|���}|���\}	}
d|z||
zdzz|||	z|
|zzdzzkr|S|S)z3Square root of n/m as a Decimal, correctly rounded.rz0.0�r})rrrk�	next_plus�
next_minus)r:rw�root�nr�dr�plus�np�dp�minus�nm�dms           r2�_decimal_sqrt_of_fracr��s ��
	�A�v�v��	"��5�>�>�!��r�A�2�1���A�J�J�����#�)�)�+�+�D�
�
"�
"�
$�
$�F�B���>�>���D�
�
"�
"�
$�
$�F�B���1�u��2���z��A��B���B���� 2�2�2�2����O�O���E�
�
#�
#�
%�
%�F�B���1�u��2���z��A��B���B���� 2�2�2�2����Kr1c�x�t|��\}}}|dkrtd���t||z|��S)a�Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    r4z%mean requires at least one data point)rQrrr)rGrPrOr:s    r2r
r
�sA�� �t�*�*�K�A�u�a��1�u�u��E�F�F�F��E�A�I�q�!�!�!r1c����	t|���n"#t$rd��fd�}||��}YnwxYw|�%t|��}�std���|�zS	t|��}n.#t$r!t	|��}t|��}YnwxYwttt||����}�|krtd���t|��}|std���||zS)z�Convert data to floats and compute the arithmetic mean.

    This runs faster than the mean() function and it always returns a float.
    If the input dataset is empty, it raises a StatisticsError.

    >>> fmean([3.5, 4.0, 5.25])
    4.25
    rc3�B�K�t|d���D]	\�}|V��
dS)Nr4)�start)�	enumerate)�iterablerTr:s  �r2rHzfmean.<locals>.count�s<�����!�(�!�4�4�4�
�
���1������
�
r1Nz&fmean requires at least one data pointz(data and weights must be the same lengthzsum of weights must be non-zero)�lenrgr%r�listr@r')rG�weightsrHrO�num_weights�num�denr:s       @r2rr�s>���	���I�I��������
��	�	�	�	�	��u�T�{�{�����������T�
�
���	L�!�"J�K�K�K��q�y��#��'�l�l�����#�#�#��w�-�-���'�l�l����#�����s�3��g�&�&�
'�
'�C��K����H�I�I�I�
�w�-�-�C��A��?�@�@�@���9�s��2�2�A-�-(B�Bc��	tttt|������S#t$rtd��d�wxYw)aYConvert data to floats and compute the geometric mean.

    Raises a StatisticsError if the input dataset is empty,
    if it contains a zero, or if it contains a negative value.

    No special efforts are made to achieve exact results.
    (However, this may change in the future.)

    >>> round(geometric_mean([54, 24, 36]), 9)
    36.0
    zGgeometric mean requires a non-empty dataset containing positive numbersN)r!rr@r$rmr)rGs r2rr�s`��G��5��S�$���(�(�)�)�)���G�G�G��<�=�=�BF�	G�G���s	�.1�Ac�,�t|��|urt|��}d}t|��}|dkrtd���|dkrQ|�O|d}t	|t
jtf��r|dkrt|���|Std���|�td|��}|}nmt|��|urt|��}t|��|krtd���td�t||��D����\}}}	t||��}td	�t||��D����\}}}	n#t$rYdSwxYw|dkrtd
���t||z|��S)a�Return the harmonic mean of data.

    The harmonic mean is the reciprocal of the arithmetic mean of the
    reciprocals of the data.  It can be used for averaging ratios or
    rates, for example speeds.

    Suppose a car travels 40 km/hr for 5 km and then speeds-up to
    60 km/hr for another 5 km. What is the average speed?

        >>> harmonic_mean([40, 60])
        48.0

    Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
    speeds-up to 60 km/hr for the remaining 30 km of the journey. What
    is the average speed?

        >>> harmonic_mean([40, 60], weights=[5, 30])
        56.0

    If ``data`` is empty, or any element is less than zero,
    ``harmonic_mean`` will raise ``StatisticsError``.
    z.harmonic mean does not support negative valuesr4z.harmonic_mean requires at least one data pointNrzunsupported typez*Number of weights does not match data sizec3�K�|]}|V��dSr6r0)r8�ws  r2r;z harmonic_mean.<locals>.<genexpr>s"���� G� G�q�� G� G� G� G� G� Gr1c3�.K�|]\}}|r||zndV��dS)rNr0)r8r�rTs   r2r;z harmonic_mean.<locals>.<genexpr>s3����P�P�T�Q���0�q�1�u�u�q�P�P�P�P�P�Pr1zWeighted sum must be positive)�iterr�r�r�
isinstance�numbers�RealrrgrrQrv�zip�ZeroDivisionErrorrr)
rGr�rur:rT�sum_weights�_rPrOrHs
          r2rr�s���.�D�z�z�T����D�z�z��
=�F��D�	�	�A��1�u�u��N�O�O�O�	
�a���G�O���G���a�'�,��0�1�1�	0��1�u�u�%�f�-�-�-��H��.�/�/�/�����A�,�,�������=�=�G�#�#��7�m�m�G��w�<�<�1���!�"N�O�O�O� � G� G�I�g�v�,F�,F� G� G� G�G�G���;�����v�&�&���P�P�S��$�=O�=O�P�P�P�P�P���5�%�%�������q�q�������z�z��=�>�>�>��K�%�'��+�+�+s�!;E�
E+�*E+c���t|��}t|��}|dkrtd���|dzdkr||dzS|dz}||dz
||zdzS)aBReturn the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    r�no median for empty datar}r4��sortedr�r)rGr:�is   r2rr%sr���$�<�<�D��D�	�	�A��A�v�v��8�9�9�9��1�u��z�z��A��F�|��
��F���Q��U��d�1�g�%��*�*r1c��t|��}t|��}|dkrtd���|dzdkr||dzS||dzdz
S)a	Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    rr�r}r4r��rGr:s  r2rr=s`���$�<�<�D��D�	�	�A��A�v�v��8�9�9�9��1�u��z�z��A��F�|���A��F�Q�J��r1c�~�t|��}t|��}|dkrtd���||dzS)aReturn the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    rr�r}r�r�s  r2r
r
Ss@���$�<�<�D��D�	�	�A��A�v�v��8�9�9�9���Q��<�r1��?c�t�t|��}t|��}|std���||dz}t||��}t	|||���}	t|��}t|��}n#t$rtd���wxYw||dzz
}|}||z
}|||dz|z
z|zzS)a�Estimates the median for numeric data binned around the midpoints
    of consecutive, fixed-width intervals.

    The *data* can be any iterable of numeric data with each value being
    exactly the midpoint of a bin.  At least one value must be present.

    The *interval* is width of each bin.

    For example, demographic information may have been summarized into
    consecutive ten-year age groups with each group being represented
    by the 5-year midpoints of the intervals:

        >>> demographics = Counter({
        ...    25: 172,   # 20 to 30 years old
        ...    35: 484,   # 30 to 40 years old
        ...    45: 387,   # 40 to 50 years old
        ...    55:  22,   # 50 to 60 years old
        ...    65:   6,   # 60 to 70 years old
        ... })

    The 50th percentile (median) is the 536th person out of the 1071
    member cohort.  That person is in the 30 to 40 year old age group.

    The regular median() function would assume that everyone in the
    tricenarian age group was exactly 35 years old.  A more tenable
    assumption is that the 484 members of that age group are evenly
    distributed between 30 and 40.  For that, we use median_grouped().

        >>> data = list(demographics.elements())
        >>> median(data)
        35
        >>> round(median_grouped(data, interval=10), 1)
        37.5

    The caller is responsible for making sure the data points are separated
    by exact multiples of *interval*.  This is essential for getting a
    correct result.  The function does not check this precondition.

    Inputs may be any numeric type that can be coerced to a float during
    the interpolation step.

    r�r})�loz$Value cannot be converted to a floatr+)r�r�rrrrfrmrg)	rG�intervalr:rTr��j�L�cf�fs	         r2rrfs���V�$�<�<�D��D�	�	�A��:��8�9�9�9�	
�Q�!�V��A�	�D�!���A��T�1��#�#�#�A�A���?�?���!�H�H�����A�A�A��?�@�@�@�A����
	
�H�s�N��A�	
�B�	�A��A��x�1�q�5�2�:�&��*�*�*s�A=�=Bc��tt|�����d��}	|ddS#t$rt	d��d�wxYw)axReturn the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

        >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
        3

    This also works with nominal (non-numeric) data:

        >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
        'red'

    If there are multiple modes with same frequency, return the first one
    encountered:

        >>> mode(['red', 'red', 'green', 'blue', 'blue'])
        'red'

    If *data* is empty, ``mode``, raises StatisticsError.

    r4rzno mode for empty dataN)r(r��most_common�
IndexErrorr)rG�pairss  r2rr�si��.
�D��J�J���+�+�A�.�.�E�B��Q�x��{����B�B�B��6�7�7�T�A�B���s	�
?�Ac����tt|����}|sgSt|�������fd�|���D��S)a.Return a list of the most frequently occurring values.

    Will return more than one result if there are multiple modes
    or an empty list if *data* is empty.

    >>> multimode('aabbbbbbbbcc')
    ['b']
    >>> multimode('aabbbbccddddeeffffgg')
    ['b', 'd', 'f']
    >>> multimode('')
    []
    c�&��g|]
\}}|�k�|��Sr0r0)r8rqrH�maxcounts   �r2�
<listcomp>zmultimode.<locals>.<listcomp>�s'���J�J�J�l�e�U���8I�8I�E�8I�8I�8Ir1)r(r��maxrNrD)rG�countsr�s  @r2rr�s\����T�$�Z�Z�
 �
 �F����	��6�=�=�?�?�#�#�H�J�J�J�J�f�l�l�n�n�J�J�J�Jr1r��	exclusive)r:�methodc��|dkrtd���t|��}t|��}|dkrtd���|dkrg|dz
}g}td|��D]M}t	||z|��\}}||||z
z||dz|zz|z}	|�|	���N|S|dkr||dz}g}td|��D]b}||z|z}|dkrdn||dz
kr|dz
n|}||z||zz
}||dz
||z
z|||zz|z}	|�|	���c|St
d|�����)a�Divide *data* into *n* continuous intervals with equal probability.

    Returns a list of (n - 1) cut points separating the intervals.

    Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
    Set *n* to 100 for percentiles which gives the 99 cuts points that
    separate *data* in to 100 equal sized groups.

    The *data* can be any iterable containing sample.
    The cut points are linearly interpolated between data points.

    If *method* is set to *inclusive*, *data* is treated as population
    data.  The minimum value is treated as the 0th percentile and the
    maximum value is treated as the 100th percentile.
    r4zn must be at least 1r}z"must have at least two data points�	inclusiver�zUnknown method: )rr�r��range�divmod�appendrm)
rGr:r��ldrw�resultr�r��delta�interpolateds
          r2rrs��� 	�1�u�u��4�5�5�5��$�<�<�D�	�T���B�	�A�v�v��B�C�C�C�
������F�����q�!���	(�	(�A��a�!�e�Q�'�'�H�A�u� ��G�q�5�y�1�D��Q��K�%�4G�G�1�L�L��M�M�,�'�'�'�'��
�
������F�����q�!���	(�	(�A��A���
�A���U�U����B�q�D����1���a�A��a�C�!�A�#�I�E� ��Q��K�1�u�9�5��Q��%��G�1�L�L��M�M�,�'�'�'�'��
�
�2��2�2�
3�
3�3r1c��t||��\}}}}|dkrtd���t||dz
z|��S)a�Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    r}z*variance requires at least two data pointsr4�r]rrr)rG�xbarrP�ssrUr:s      r2rr6sJ��L�d�D�/�/�K�A�r�1�a��1�u�u��J�K�K�K��B�!�a�%�L�!�$�$�$r1c�|�t||��\}}}}|dkrtd���t||z|��S)a,Return the population variance of ``data``.

    data should be a sequence or iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    r4z*pvariance requires at least one data pointr�)rG�murPr�rUr:s      r2rrbsF��F�d�B�-�-�K�A�r�1�a��1�u�u��J�K�K�K��B��F�A���r1c��t||��\}}}}|dkrtd���||dz
z}t|t��rt	|j|j��St|j|j��S)z�Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    r}�'stdev requires at least two data pointsr4�r]rrerr�rnror�)rGr�rPr�rUr:�msss       r2rr�sy���d�D�/�/�K�A�r�1�a��1�u�u��G�H�H�H�
��A��,�C��!�W���E�$�S�]�C�O�D�D�D��s�}�c�o�>�>�>r1c���t||��\}}}}|dkrtd���||z}t|t��rt	|j|j��St|j|j��S)z�Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    r4z'pstdev requires at least one data pointr�)rGr�rPr�rUr:r�s       r2rr�su���d�B�-�-�K�A�r�1�a��1�u�u��G�H�H�H�
�q�&�C��!�W���E�$�S�]�C�O�D�D�D��s�}�c�o�>�>�>r1c�4�t|��\}}}}|dkrtd���||dz
z}	t|��t|j|j��fS#t$r1t|��t|��t|��zfcYSwxYw)zFIn one pass, compute the mean and sample standard deviation as floats.r}r�r4)r]rrfr�rnror`)rGrPr�r�r:r�s      r2�_mean_stdevr��s�����Y�Y�N�A�r�4���1�u�u��G�H�H�H�
��A��,�C�4��T�{�{�/��
�s��O�O�O�O���4�4�4��T�{�{�E�$�K�K�%��)�)�3�3�3�3�3�4���s�(A�8B�Bc�>���t|��}t|��|krtd���|dkrtd���t|��|z�t|��|z�t��fd�t||��D����}||dz
zS)apCovariance

    Return the sample covariance of two inputs *x* and *y*. Covariance
    is a measure of the joint variability of two inputs.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
    >>> covariance(x, y)
    0.75
    >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> covariance(x, z)
    -7.5
    >>> covariance(z, x)
    -7.5

    zDcovariance requires that both inputs have same number of data pointsr}z,covariance requires at least two data pointsc3�4�K�|]\}}|�z
|�z
zV��dSr6r0�r8�xi�yir��ybars   ��r2r;zcovariance.<locals>.<genexpr>��4�����A�A�V�R���T�	�b�4�i�(�A�A�A�A�A�Ar1r4)r�rr%r�)rT�yr:�sxyr�r�s    @@r2rr�s�����"	�A���A�
�1�v�v��{�{��d�e�e�e��1�u�u��L�M�M�M���7�7�Q�;�D���7�7�Q�;�D�
�A�A�A�A�A�s�1�a�y�y�A�A�A�
A�
A�C��!�a�%�=�r1c�����t|��}t|��|krtd���|dkrtd���t|��|z�t|��|z�t��fd�t||��D����}t��fd�|D����}t��fd�|D����}	|t	||z��zS#t
$rtd���wxYw)aPearson's correlation coefficient

    Return the Pearson's correlation coefficient for two inputs. Pearson's
    correlation coefficient *r* takes values between -1 and +1. It measures the
    strength and direction of the linear relationship, where +1 means very
    strong, positive linear relationship, -1 very strong, negative linear
    relationship, and 0 no linear relationship.

    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
    >>> correlation(x, x)
    1.0
    >>> correlation(x, y)
    -1.0

    zEcorrelation requires that both inputs have same number of data pointsr}z-correlation requires at least two data pointsc3�4�K�|]\}}|�z
|�z
zV��dSr6r0r�s   ��r2r;zcorrelation.<locals>.<genexpr>�r�r1c3�,�K�|]}|�z
x��zV��dSr6r0�r8r�r9r�s  ��r2r;zcorrelation.<locals>.<genexpr>��0�����0�0��R�$�Y���!�#�0�0�0�0�0�0r1c3�,�K�|]}|�z
x��zV��dSr6r0)r8r�r9r�s  ��r2r;zcorrelation.<locals>.<genexpr>�r�r1z&at least one of the inputs is constant)r�rr%r�rr�)	rTr�r:r�r\�syyr9r�r�s	      @@@r2rr�s&�����"	�A���A�
�1�v�v��{�{��e�f�f�f��1�u�u��M�N�N�N���7�7�Q�;�D���7�7�Q�;�D�
�A�A�A�A�A�s�1�a�y�y�A�A�A�
A�
A�C�
�0�0�0�0�0�a�0�0�0�
0�
0�C�
�0�0�0�0�0�a�0�0�0�
0�
0�C�H��T�#��)�_�_�$�$���H�H�H��F�G�G�G�H���s�C&�&D�LinearRegression��slope�	interceptF)�proportionalc�p��	�
�t|��}t|��|krtd���|dkrtd���|rAtd�t||��D����}td�|D����}njt|��|z�	t|��|z�
t�	�
fd�t||��D����}t��	fd�|D����}	||z}n#t$rtd���wxYw|rd	n�
|�	zz
}t||�
��S)a�Slope and intercept for simple linear regression.

    Return the slope and intercept of simple linear regression
    parameters estimated using ordinary least squares. Simple linear
    regression describes relationship between an independent variable
    *x* and a dependent variable *y* in terms of a linear function:

        y = slope * x + intercept + noise

    where *slope* and *intercept* are the regression parameters that are
    estimated, and noise represents the variability of the data that was
    not explained by the linear regression (it is equal to the
    difference between predicted and actual values of the dependent
    variable).

    The parameters are returned as a named tuple.

    >>> x = [1, 2, 3, 4, 5]
    >>> noise = NormalDist().samples(5, seed=42)
    >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
    >>> linear_regression(x, y)  #doctest: +ELLIPSIS
    LinearRegression(slope=3.09078914170..., intercept=1.75684970486...)

    If *proportional* is true, the independent variable *x* and the
    dependent variable *y* are assumed to be directly proportional.
    The data is fit to a line passing through the origin.

    Since the *intercept* will always be 0.0, the underlying linear
    function simplifies to:

        y = slope * x + noise

    >>> y = [3 * x[i] + noise[i] for i in range(5)]
    >>> linear_regression(x, y, proportional=True)  #doctest: +ELLIPSIS
    LinearRegression(slope=3.02447542484..., intercept=0.0)

    zKlinear regression requires that both inputs have same number of data pointsr}z3linear regression requires at least two data pointsc3�&K�|]\}}||zV��
dSr6r0)r8r�r�s   r2r;z$linear_regression.<locals>.<genexpr>/s*����3�3�v�r�2�2��7�3�3�3�3�3�3r1c3� K�|]	}||zV��
dSr6r0)r8r�s  r2r;z$linear_regression.<locals>.<genexpr>0s&����'�'�r�2��7�'�'�'�'�'�'r1c3�4�K�|]\}}|�z
|�z
zV��dSr6r0r�s   ��r2r;z$linear_regression.<locals>.<genexpr>4s4�����E�E���R�B��I�"�t�)�,�E�E�E�E�E�Er1c3�,�K�|]}|�z
x��zV��dSr6r0r�s  ��r2r;z$linear_regression.<locals>.<genexpr>5s0�����4�4�B��d��N�A�a�'�4�4�4�4�4�4r1z
x is constant�r�)r�rr%r�r�r�)rTr�r�r:r�r\r�r�r9r�r�s        @@@r2r	r	sf�����L	�A���A�
�1�v�v��{�{��k�l�l�l��1�u�u��S�T�T�T��5��3�3��Q����3�3�3�3�3���'�'�Q�'�'�'�'�'����A�w�w��{���A�w�w��{���E�E�E�E�E�3�q�!�9�9�E�E�E�E�E���4�4�4�4�4�!�4�4�4�4�4��/��c�	�����/�/�/��o�.�.�.�/����#�<�������)<�I��%�9�=�=�=�=s�8C>�>Dc��|dz
}t|��dkrpd||zz
}d|zdz|zdz|zdz|zdz|zd	z|zd
z|zdz|z}d|zd
z|zdz|zdz|zdz|zdz|zdz|zdz}||z}|||zzS|dkr|nd|z
}tt|����}|dkr^|dz
}d|zdz|zdz|zdz|zdz|zdz|zdz|zdz}d|zd z|zd!z|zd"z|zd#z|zd$z|zd%z|zdz}n]|dz
}d&|zd'z|zd(z|zd)z|zd*z|zd+z|zd,z|zd-z}d.|zd/z|zd0z|zd1z|zd2z|zd3z|zd4z|zdz}||z}|dkr|}|||zzS)5N��?g333333�?g��Q��?g^�}o)��@g�E.k�R�@g ��Ul�@g*u��>l�@g�N����@g�"]Ξ@gnC���`@gu��@giK��~j�@gv��|E�@g��d�|1�@gfR��r��@g��u.2�@g���~y�@g�n8(E@r�r�g@g�������?g鬷�ZaI?gg�El�D�?g7\�����?g�uS�S�?g�=�.
@gj%b�@g���Hw�@gjR�e�?g�9dh?
>g('߿��A?g��~z �?g@�3��?gɅ3��?g3fR�x�?gI�F��l@g����t��>g*�Y��n�>gESB\T?g�N;A+�?g�UR1��?gE�F���?gP�n��@g&�>���@g����i�<g�@�F�>g�tcI,\�>g�ŝ���I?g*F2�v�?g�C4�?g��O�1�?)r rr$)�pr��sigmar��rr�r�rTs        r2�_normal_dist_inv_cdfr�As���	
�C��A��A�w�w�%����q�1�u���0�1�4�0�1�45�6�0�1�45�6�1�1�56�6�1�	1�56�	6�
1�1�
56�6�1�
1�56�
6�1�1�56�6��1�1�4�0�1�45�6�0�1�45�6�1�1�56�6�1�	1�56�	6�
1�1�
56�6�1�
1�56�
6����
�#�I���Q��Y���
�#�X�X���3��7�A��c�!�f�f�W�
�
�A��C�x�x�
��G��1�A�5�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7�2�2��2�A�5�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7�����
��G��1�A�5�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7�2�2��3�Q�6�1�2�56�7�1�2�56�7�2�2�67�7�2�	2�67�	7�
2�2�
67�7�2�
2�67�
7����	�c�	�A��3�w�w�
�B��
��U���r1)r�c�*�eZdZdZddd�Zd$d�Zed���Zd	d
�d�Zd�Z	d
�Z
d�Zd%d�Zd�Z
d�Zed���Zed���Zed���Zed���Zed���Zd�Zd�Zd�Zd�Zd�Zd�ZeZd�ZeZd�Zd �Zd!�Z d"�Z!d#�Z"d	S)&rz(Normal distribution of a random variablez(Arithmetic mean of a normal distributionz+Standard deviation of a normal distribution��_mu�_sigmar�r�c��|dkrtd���t|��|_t|��|_dS)zDNormalDist where mu is the mean and sigma is the standard deviation.r�zsigma must be non-negativeN)rrfrr)�selfr�r�s   r2�__init__zNormalDist.__init__�s8���3�;�;�!�">�?�?�?���9�9����E�l�l����r1c�&�|t|���S)z5Make a normal distribution instance from sample data.)r�)�clsrGs  r2�from_sampleszNormalDist.from_samples�s���s�K��%�%�&�&r1N)�seedc�����|�tjntj|��j�|j|jc�����fd�t|��D��S)z=Generate *n* samples for a given mean and standard deviation.Nc�(��g|]}�������Sr0r0)r8r��gaussr�r�s  ���r2r�z&NormalDist.samples.<locals>.<listcomp>�s%���3�3�3�Q���b�%� � �3�3�3r1)�randomr�Randomrrr�)rr:r	rr�r�s   @@@r2�sampleszNormalDist.samples�sV����� $�����&�-��2E�2E�2K���H�d�k�	��E�3�3�3�3�3�3�%��(�(�3�3�3�3r1c��|j|jz}|std���||jz
}t||zd|zz��t	t
|z��zS)z4Probability density function.  P(x <= X < x+dx) / dxz$pdf() not defined when sigma is zerog�)rrrr!rr#)rrTr�diffs    r2�pdfzNormalDist.pdf�s_���;���,���	J�!�"H�I�I�I��4�8�|���4�$�;�$��/�2�3�3�d�3��>�6J�6J�J�Jr1c��|jstd���ddt||jz
|jtzz��zzS)z,Cumulative distribution function.  P(X <= x)z$cdf() not defined when sigma is zeror�r�)rrr"r�_SQRT2�rrTs  r2�cdfzNormalDist.cdf�sF���{�	J�!�"H�I�I�I��c�C��T�X��$�+��2F� G�H�H�H�I�Ir1c��|dks|dkrtd���|jdkrtd���t||j|j��S)aSInverse cumulative distribution function.  x : P(X <= x) = p

        Finds the value of the random variable such that the probability of
        the variable being less than or equal to that value equals the given
        probability.

        This function is also called the percent point function or quantile
        function.
        r�r�z$p must be in the range 0.0 < p < 1.0z-cdf() not defined when sigma at or below zero)rrr�r)rr�s  r2�inv_cdfzNormalDist.inv_cdf�sV��
��8�8�q�C�x�x�!�"H�I�I�I��;�#���!�"Q�R�R�R�#�A�t�x���=�=�=r1r�c�@�����fd�td���D��S)anDivide into *n* continuous intervals with equal probability.

        Returns a list of (n - 1) cut points separating the intervals.

        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
        Set *n* to 100 for percentiles which gives the 99 cuts points that
        separate the normal distribution in to 100 equal sized groups.
        c�@��g|]}��|�z����Sr0)r)r8r�r:rs  ��r2r�z(NormalDist.quantiles.<locals>.<listcomp>�s)���9�9�9�����Q��U�#�#�9�9�9r1r4)r�)rr:s``r2rzNormalDist.quantiles�s+����:�9�9�9�9�U�1�a�[�[�9�9�9�9r1c	�
�t|t��std���||}}|j|jf|j|jfkr||}}|j|j}}|r|st
d���||z
}t|j|jz
��}|s%dt|d|jztzz��z
S|j|z|j|zz
}|j|jzt||z|t||z��zz��z}	||	z|z}
||	z
|z}dt|�|
��|�|
��z
��t|�|��|�|��z
��zz
S)a�Compute the overlapping coefficient (OVL) between two normal distributions.

        Measures the agreement between two normal probability distributions.
        Returns a value between 0.0 and 1.0 giving the overlapping area in
        the two underlying probability density functions.

            >>> N1 = NormalDist(2.4, 1.6)
            >>> N2 = NormalDist(3.2, 2.0)
            >>> N1.overlap(N2)
            0.8035050657330205
        z$Expected another NormalDist instancez(overlap() not defined when sigma is zeror�r+)
r�rrgrrrrr r"rrr$r)r�other�X�Y�X_var�Y_var�dvr�r{�b�x1�x2s            r2�overlapzNormalDist.overlap�s��� �%��,�,�	D��B�C�C�C��U�1��
�H�a�e����!�%�0�0�0��a�q�A��z�1�:�u���	N�E�	N�!�"L�M�M�M�
�U�]��
�!�%�!�%�-�
 �
 ���	=���R�3���>�F�#:�;�<�<�<�<�
�E�E�M�A�E�E�M�)��
�H�q�x��$�r�B�w��c�%�%�-�6H�6H�1H�'H�"I�"I�I���!�e�r�\���!�e�r�\���d�1�5�5��9�9�q�u�u�R�y�y�0�1�1�D����r���Q�U�U�2�Y�Y�9N�4O�4O�O�P�Pr1c�R�|jstd���||jz
|jzS)z�Compute the Standard Score.  (x - mean) / stdev

        Describes *x* in terms of the number of standard deviations
        above or below the mean of the normal distribution.
        z'zscore() not defined when sigma is zero)rrrrs  r2�zscorezNormalDist.zscore�s1���{�	M�!�"K�L�L�L��D�H����+�+r1c��|jS)z+Arithmetic mean of the normal distribution.�r�rs r2r
zNormalDist.mean����x�r1c��|jS)z,Return the median of the normal distributionr)r*s r2rzNormalDist.median	r+r1c��|jS)z�Return the mode of the normal distribution

        The mode is the value x where which the probability density
        function (pdf) takes its maximum value.
        r)r*s r2rzNormalDist.modes���x�r1c��|jS)z.Standard deviation of the normal distribution.�rr*s r2rzNormalDist.stdevs���{�r1c� �|j|jzS)z!Square of the standard deviation.r/r*s r2rzNormalDist.variances���{�T�[�(�(r1c���t|t��r5t|j|jzt|j|j����St|j|z|j��S)ajAdd a constant or another NormalDist instance.

        If *other* is a constant, translate mu by the constant,
        leaving sigma unchanged.

        If *other* is a NormalDist, add both the means and the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        �r�rrrr�r#r$s  r2�__add__zNormalDist.__add__!�U���b�*�%�%�	L��b�f�r�v�o�u�R�Y��	�/J�/J�K�K�K��"�&�2�+�r�y�1�1�1r1c���t|t��r5t|j|jz
t|j|j����St|j|z
|j��S)asSubtract a constant or another NormalDist instance.

        If *other* is a constant, translate by the constant mu,
        leaving sigma unchanged.

        If *other* is a NormalDist, subtract the means and add the variances.
        Mathematically, this works only if the two distributions are
        independent or if they are jointly normally distributed.
        r2r3s  r2�__sub__zNormalDist.__sub__/r5r1c�\�t|j|z|jt|��z��S)z�Multiply both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        �rrrr r3s  r2�__mul__zNormalDist.__mul__=�'���"�&�2�+�r�y�4��8�8�';�<�<�<r1c�\�t|j|z|jt|��z��S)z�Divide both mu and sigma by a constant.

        Used for rescaling, perhaps to change measurement units.
        Sigma is scaled with the absolute value of the constant.
        r9r3s  r2�__truediv__zNormalDist.__truediv__Er;r1c�6�t|j|j��S)zReturn a copy of the instance.�rrr�r#s r2�__pos__zNormalDist.__pos__Ms���"�&�"�)�,�,�,r1c�8�t|j|j��S)z(Negates mu while keeping sigma the same.r?r@s r2�__neg__zNormalDist.__neg__Qs���2�6�'�2�9�-�-�-r1c��||z
S)z<Subtract a NormalDist from a constant or another NormalDist.r0r3s  r2�__rsub__zNormalDist.__rsub__Ws���b��z�r1c�z�t|t��stS|j|jko|j|jkS)zFTwo NormalDist objects are equal if their mu and sigma are both equal.)r�r�NotImplementedrrr3s  r2�__eq__zNormalDist.__eq__]s7���"�j�)�)�	"�!�!��v����:�B�I���$:�:r1c�8�t|j|jf��S)zCNormalDist objects hash equal if their mu and sigma are both equal.)�hashrrr*s r2�__hash__zNormalDist.__hash__cs���T�X�t�{�+�,�,�,r1c�P�t|��j�d|j�d|j�d�S)Nz(mu=z, sigma=�))r?r-rrr*s r2�__repr__zNormalDist.__repr__gs.���t�*�*�%�O�O�4�8�O�O�t�{�O�O�O�Or1c��|j|jfSr6rr*s r2�__getstate__zNormalDist.__getstate__js���x���$�$r1c�$�|\|_|_dSr6r)r�states  r2�__setstate__zNormalDist.__setstate__ms�� %����$�+�+�+r1)r�r�)r�)#r-r.r/�__doc__�	__slots__r�classmethodrrrrrrr%r'�propertyr
rrrrr4r7r:r=rArC�__radd__rE�__rmul__rHrKrNrPrSr0r1r2rr�s0������.�.�
:�?���I�
#�#�#�#��'�'��[�'�"&�4�4�4�4�4�K�K�K�J�J�J�>�>�>� 	:�	:�	:�	:� Q� Q� Q�D	,�	,�	,�����X������X������X������X���)�)��X�)�2�2�2�2�2�2�=�=�=�=�=�=�-�-�-�.�.�.��H�����H�;�;�;�-�-�-�P�P�P�%�%�%�&�&�&�&�&r1rr6)rs)r�)KrT�__all__rar�r
�sys�	fractionsr�decimalr�	itertoolsrr�bisectrrrrr r!r"r#r$r%�	functoolsr&�operatorr'�collectionsr(r)r*rrmrrQr]rBrErArrrvrFr|�
float_info�mant_digr�__annotations__rfr�r�r
rrrrrr
rrrrrrrrr�rrr�r	r��_statistics�ImportErrorrr0r1r2�<module>rhs���h�h�h�T����.��������
�
�
�
�
�
�
�
�������������%�%�%�%�%�%�%�%�,�,�,�,�,�,�,�,�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�������������8�8�8�8�8�8�8�8�8�8�	
��c����	�	�	�	�	�j�	�	�	�3�3�3�l&�&�&�&�R � � �4�4�4�>+�+�+�\���$���������������3�>�2�2�Q�6���6�6�6�
#�3�
#�3�
#�5�
#�
#�
#�
#��S��S��W�����<"�"�"�,#�#�#�#�LG�G�G�&5,�5,�5,�5,�p+�+�+�0 � � �,���&E+�E+�E+�E+�PB�B�B�<K�K�K�r�;�(4�(4�(4�(4�(4�b)%�)%�)%�)%�X&�&�&�&�R?�?�?�?�$?�?�?�?�$
4�
4�
4�(���8H�H�H�B�:�0�2H�I�I��05�8>�8>�8>�8>�8>�|G�G�G�V	�0�0�0�0�0�0�0���	�	�	��D�	����\&�\&�\&�\&�\&�\&�\&�\&�\&�\&s�D!�!D)�(D)
Name
Size
Permissions
Options
__future__.cpython-311.opt-1.pyc
4.812 KB
-rw-r--r--
__future__.cpython-311.opt-2.pyc
2.812 KB
-rw-r--r--
__future__.cpython-311.pyc
4.812 KB
-rw-r--r--
__hello__.cpython-311.opt-1.pyc
1.065 KB
-rw-r--r--
__hello__.cpython-311.opt-2.pyc
1.013 KB
-rw-r--r--
__hello__.cpython-311.pyc
1.065 KB
-rw-r--r--
_aix_support.cpython-311.opt-1.pyc
4.277 KB
-rw-r--r--
_aix_support.cpython-311.opt-2.pyc
2.976 KB
-rw-r--r--
_aix_support.cpython-311.pyc
4.277 KB
-rw-r--r--
_bootsubprocess.cpython-311.opt-1.pyc
4.368 KB
-rw-r--r--
_bootsubprocess.cpython-311.opt-2.pyc
4.144 KB
-rw-r--r--
_bootsubprocess.cpython-311.pyc
4.368 KB
-rw-r--r--
_collections_abc.cpython-311.opt-1.pyc
50.028 KB
-rw-r--r--
_collections_abc.cpython-311.opt-2.pyc
44.149 KB
-rw-r--r--
_collections_abc.cpython-311.pyc
50.028 KB
-rw-r--r--
_compat_pickle.cpython-311.opt-1.pyc
7.172 KB
-rw-r--r--
_compat_pickle.cpython-311.opt-2.pyc
7.172 KB
-rw-r--r--
_compat_pickle.cpython-311.pyc
7.353 KB
-rw-r--r--
_compression.cpython-311.opt-1.pyc
7.874 KB
-rw-r--r--
_compression.cpython-311.opt-2.pyc
7.673 KB
-rw-r--r--
_compression.cpython-311.pyc
7.874 KB
-rw-r--r--
_markupbase.cpython-311.opt-1.pyc
13.506 KB
-rw-r--r--
_markupbase.cpython-311.opt-2.pyc
13.14 KB
-rw-r--r--
_markupbase.cpython-311.pyc
13.765 KB
-rw-r--r--
_osx_support.cpython-311.opt-1.pyc
19.472 KB
-rw-r--r--
_osx_support.cpython-311.opt-2.pyc
16.942 KB
-rw-r--r--
_osx_support.cpython-311.pyc
19.472 KB
-rw-r--r--
_py_abc.cpython-311.opt-1.pyc
7.634 KB
-rw-r--r--
_py_abc.cpython-311.opt-2.pyc
6.484 KB
-rw-r--r--
_py_abc.cpython-311.pyc
7.706 KB
-rw-r--r--
_pydecimal.cpython-311.opt-1.pyc
238.549 KB
-rw-r--r--
_pydecimal.cpython-311.opt-2.pyc
160.305 KB
-rw-r--r--
_pydecimal.cpython-311.pyc
238.549 KB
-rw-r--r--
_pyio.cpython-311.opt-1.pyc
117.272 KB
-rw-r--r--
_pyio.cpython-311.opt-2.pyc
95.422 KB
-rw-r--r--
_pyio.cpython-311.pyc
117.336 KB
-rw-r--r--
_sitebuiltins.cpython-311.opt-1.pyc
5.31 KB
-rw-r--r--
_sitebuiltins.cpython-311.opt-2.pyc
4.795 KB
-rw-r--r--
_sitebuiltins.cpython-311.pyc
5.31 KB
-rw-r--r--
_strptime.cpython-311.opt-1.pyc
27.267 KB
-rw-r--r--
_strptime.cpython-311.opt-2.pyc
23.688 KB
-rw-r--r--
_strptime.cpython-311.pyc
27.267 KB
-rw-r--r--
_sysconfigdata__linux_x86_64-linux-gnu.cpython-311.opt-1.pyc
61.639 KB
-rw-r--r--
_sysconfigdata__linux_x86_64-linux-gnu.cpython-311.opt-2.pyc
61.639 KB
-rw-r--r--
_sysconfigdata__linux_x86_64-linux-gnu.cpython-311.pyc
61.639 KB
-rw-r--r--
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-311.opt-1.pyc
61.163 KB
-rw-r--r--
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-311.opt-2.pyc
61.163 KB
-rw-r--r--
_sysconfigdata_d_linux_x86_64-linux-gnu.cpython-311.pyc
61.163 KB
-rw-r--r--
_threading_local.cpython-311.opt-1.pyc
9.002 KB
-rw-r--r--
_threading_local.cpython-311.opt-2.pyc
5.771 KB
-rw-r--r--
_threading_local.cpython-311.pyc
9.002 KB
-rw-r--r--
_weakrefset.cpython-311.opt-1.pyc
12.845 KB
-rw-r--r--
_weakrefset.cpython-311.opt-2.pyc
12.845 KB
-rw-r--r--
_weakrefset.cpython-311.pyc
12.845 KB
-rw-r--r--
abc.cpython-311.opt-1.pyc
8.842 KB
-rw-r--r--
abc.cpython-311.opt-2.pyc
5.717 KB
-rw-r--r--
abc.cpython-311.pyc
8.842 KB
-rw-r--r--
aifc.cpython-311.opt-1.pyc
44.455 KB
-rw-r--r--
aifc.cpython-311.opt-2.pyc
39.37 KB
-rw-r--r--
aifc.cpython-311.pyc
44.455 KB
-rw-r--r--
antigravity.cpython-311.opt-1.pyc
1.24 KB
-rw-r--r--
antigravity.cpython-311.opt-2.pyc
1.106 KB
-rw-r--r--
antigravity.cpython-311.pyc
1.24 KB
-rw-r--r--
argparse.cpython-311.opt-1.pyc
111.04 KB
-rw-r--r--
argparse.cpython-311.opt-2.pyc
101.564 KB
-rw-r--r--
argparse.cpython-311.pyc
111.324 KB
-rw-r--r--
ast.cpython-311.opt-1.pyc
106.852 KB
-rw-r--r--
ast.cpython-311.opt-2.pyc
98.677 KB
-rw-r--r--
ast.cpython-311.pyc
107.106 KB
-rw-r--r--
asynchat.cpython-311.opt-1.pyc
11.621 KB
-rw-r--r--
asynchat.cpython-311.opt-2.pyc
10.297 KB
-rw-r--r--
asynchat.cpython-311.pyc
11.621 KB
-rw-r--r--
asyncore.cpython-311.opt-1.pyc
27.541 KB
-rw-r--r--
asyncore.cpython-311.opt-2.pyc
26.364 KB
-rw-r--r--
asyncore.cpython-311.pyc
27.541 KB
-rw-r--r--
base64.cpython-311.opt-1.pyc
27.377 KB
-rw-r--r--
base64.cpython-311.opt-2.pyc
22.885 KB
-rw-r--r--
base64.cpython-311.pyc
27.793 KB
-rw-r--r--
bdb.cpython-311.opt-1.pyc
37.78 KB
-rw-r--r--
bdb.cpython-311.opt-2.pyc
28.654 KB
-rw-r--r--
bdb.cpython-311.pyc
37.78 KB
-rw-r--r--
bisect.cpython-311.opt-1.pyc
3.627 KB
-rw-r--r--
bisect.cpython-311.opt-2.pyc
2.363 KB
-rw-r--r--
bisect.cpython-311.pyc
3.627 KB
-rw-r--r--
bz2.cpython-311.opt-1.pyc
15.797 KB
-rw-r--r--
bz2.cpython-311.opt-2.pyc
11.029 KB
-rw-r--r--
bz2.cpython-311.pyc
15.797 KB
-rw-r--r--
cProfile.cpython-311.opt-1.pyc
8.875 KB
-rw-r--r--
cProfile.cpython-311.opt-2.pyc
8.423 KB
-rw-r--r--
cProfile.cpython-311.pyc
8.875 KB
-rw-r--r--
calendar.cpython-311.opt-1.pyc
43.705 KB
-rw-r--r--
calendar.cpython-311.opt-2.pyc
39.573 KB
-rw-r--r--
calendar.cpython-311.pyc
43.705 KB
-rw-r--r--
cgi.cpython-311.opt-1.pyc
42.847 KB
-rw-r--r--
cgi.cpython-311.opt-2.pyc
34.517 KB
-rw-r--r--
cgi.cpython-311.pyc
42.847 KB
-rw-r--r--
cgitb.cpython-311.opt-1.pyc
18.452 KB
-rw-r--r--
cgitb.cpython-311.opt-2.pyc
16.922 KB
-rw-r--r--
cgitb.cpython-311.pyc
18.452 KB
-rw-r--r--
chunk.cpython-311.opt-1.pyc
7.266 KB
-rw-r--r--
chunk.cpython-311.opt-2.pyc
5.211 KB
-rw-r--r--
chunk.cpython-311.pyc
7.266 KB
-rw-r--r--
cmd.cpython-311.opt-1.pyc
20.128 KB
-rw-r--r--
cmd.cpython-311.opt-2.pyc
14.918 KB
-rw-r--r--
cmd.cpython-311.pyc
20.128 KB
-rw-r--r--
code.cpython-311.opt-1.pyc
13.589 KB
-rw-r--r--
code.cpython-311.opt-2.pyc
8.521 KB
-rw-r--r--
code.cpython-311.pyc
13.589 KB
-rw-r--r--
codecs.cpython-311.opt-1.pyc
44.197 KB
-rw-r--r--
codecs.cpython-311.opt-2.pyc
29.198 KB
-rw-r--r--
codecs.cpython-311.pyc
44.197 KB
-rw-r--r--
codeop.cpython-311.opt-1.pyc
7.563 KB
-rw-r--r--
codeop.cpython-311.opt-2.pyc
4.634 KB
-rw-r--r--
codeop.cpython-311.pyc
7.563 KB
-rw-r--r--
colorsys.cpython-311.opt-1.pyc
4.849 KB
-rw-r--r--
colorsys.cpython-311.opt-2.pyc
4.256 KB
-rw-r--r--
colorsys.cpython-311.pyc
4.849 KB
-rw-r--r--
compileall.cpython-311.opt-1.pyc
21.093 KB
-rw-r--r--
compileall.cpython-311.opt-2.pyc
17.935 KB
-rw-r--r--
compileall.cpython-311.pyc
21.093 KB
-rw-r--r--
configparser.cpython-311.opt-1.pyc
70.138 KB
-rw-r--r--
configparser.cpython-311.opt-2.pyc
55.522 KB
-rw-r--r--
configparser.cpython-311.pyc
70.138 KB
-rw-r--r--
contextlib.cpython-311.opt-1.pyc
32.291 KB
-rw-r--r--
contextlib.cpython-311.opt-2.pyc
26.311 KB
-rw-r--r--
contextlib.cpython-311.pyc
32.308 KB
-rw-r--r--
contextvars.cpython-311.opt-1.pyc
0.306 KB
-rw-r--r--
contextvars.cpython-311.opt-2.pyc
0.306 KB
-rw-r--r--
contextvars.cpython-311.pyc
0.306 KB
-rw-r--r--
copy.cpython-311.opt-1.pyc
10.938 KB
-rw-r--r--
copy.cpython-311.opt-2.pyc
8.709 KB
-rw-r--r--
copy.cpython-311.pyc
10.938 KB
-rw-r--r--
copyreg.cpython-311.opt-1.pyc
7.969 KB
-rw-r--r--
copyreg.cpython-311.opt-2.pyc
7.208 KB
-rw-r--r--
copyreg.cpython-311.pyc
8.002 KB
-rw-r--r--
crypt.cpython-311.opt-1.pyc
5.715 KB
-rw-r--r--
crypt.cpython-311.opt-2.pyc
5.083 KB
-rw-r--r--
crypt.cpython-311.pyc
5.715 KB
-rw-r--r--
csv.cpython-311.opt-1.pyc
19.6 KB
-rw-r--r--
csv.cpython-311.opt-2.pyc
17.629 KB
-rw-r--r--
csv.cpython-311.pyc
19.6 KB
-rw-r--r--
dataclasses.cpython-311.opt-1.pyc
46.082 KB
-rw-r--r--
dataclasses.cpython-311.opt-2.pyc
42.545 KB
-rw-r--r--
dataclasses.cpython-311.pyc
46.132 KB
-rw-r--r--
datetime.cpython-311.opt-1.pyc
95.861 KB
-rw-r--r--
datetime.cpython-311.opt-2.pyc
88.198 KB
-rw-r--r--
datetime.cpython-311.pyc
98.975 KB
-rw-r--r--
decimal.cpython-311.opt-1.pyc
0.544 KB
-rw-r--r--
decimal.cpython-311.opt-2.pyc
0.544 KB
-rw-r--r--
decimal.cpython-311.pyc
0.544 KB
-rw-r--r--
difflib.cpython-311.opt-1.pyc
79.699 KB
-rw-r--r--
difflib.cpython-311.opt-2.pyc
47.21 KB
-rw-r--r--
difflib.cpython-311.pyc
79.748 KB
-rw-r--r--
dis.cpython-311.opt-1.pyc
35.796 KB
-rw-r--r--
dis.cpython-311.opt-2.pyc
31.541 KB
-rw-r--r--
dis.cpython-311.pyc
35.835 KB
-rw-r--r--
doctest.cpython-311.opt-1.pyc
109.991 KB
-rw-r--r--
doctest.cpython-311.opt-2.pyc
75.754 KB
-rw-r--r--
doctest.cpython-311.pyc
110.371 KB
-rw-r--r--
enum.cpython-311.opt-1.pyc
85.947 KB
-rw-r--r--
enum.cpython-311.opt-2.pyc
76.734 KB
-rw-r--r--
enum.cpython-311.pyc
85.947 KB
-rw-r--r--
filecmp.cpython-311.opt-1.pyc
15.355 KB
-rw-r--r--
filecmp.cpython-311.opt-2.pyc
12.799 KB
-rw-r--r--
filecmp.cpython-311.pyc
15.355 KB
-rw-r--r--
fileinput.cpython-311.opt-1.pyc
20.686 KB
-rw-r--r--
fileinput.cpython-311.opt-2.pyc
15.36 KB
-rw-r--r--
fileinput.cpython-311.pyc
20.686 KB
-rw-r--r--
fnmatch.cpython-311.opt-1.pyc
7.167 KB
-rw-r--r--
fnmatch.cpython-311.opt-2.pyc
6.012 KB
-rw-r--r--
fnmatch.cpython-311.pyc
7.31 KB
-rw-r--r--
fractions.cpython-311.opt-1.pyc
28.571 KB
-rw-r--r--
fractions.cpython-311.opt-2.pyc
21.674 KB
-rw-r--r--
fractions.cpython-311.pyc
28.571 KB
-rw-r--r--
ftplib.cpython-311.opt-1.pyc
46.544 KB
-rw-r--r--
ftplib.cpython-311.opt-2.pyc
36.622 KB
-rw-r--r--
ftplib.cpython-311.pyc
46.544 KB
-rw-r--r--
functools.cpython-311.opt-1.pyc
45.556 KB
-rw-r--r--
functools.cpython-311.opt-2.pyc
39.122 KB
-rw-r--r--
functools.cpython-311.pyc
45.556 KB
-rw-r--r--
genericpath.cpython-311.opt-1.pyc
6.691 KB
-rw-r--r--
genericpath.cpython-311.opt-2.pyc
5.64 KB
-rw-r--r--
genericpath.cpython-311.pyc
6.691 KB
-rw-r--r--
getopt.cpython-311.opt-1.pyc
9.452 KB
-rw-r--r--
getopt.cpython-311.opt-2.pyc
6.971 KB
-rw-r--r--
getopt.cpython-311.pyc
9.518 KB
-rw-r--r--
getpass.cpython-311.opt-1.pyc
7.351 KB
-rw-r--r--
getpass.cpython-311.opt-2.pyc
6.21 KB
-rw-r--r--
getpass.cpython-311.pyc
7.351 KB
-rw-r--r--
gettext.cpython-311.opt-1.pyc
23.697 KB
-rw-r--r--
gettext.cpython-311.opt-2.pyc
23.039 KB
-rw-r--r--
gettext.cpython-311.pyc
23.697 KB
-rw-r--r--
glob.cpython-311.opt-1.pyc
10.884 KB
-rw-r--r--
glob.cpython-311.opt-2.pyc
9.965 KB
-rw-r--r--
glob.cpython-311.pyc
10.96 KB
-rw-r--r--
graphlib.cpython-311.opt-1.pyc
10.741 KB
-rw-r--r--
graphlib.cpython-311.opt-2.pyc
7.427 KB
-rw-r--r--
graphlib.cpython-311.pyc
10.821 KB
-rw-r--r--
gzip.cpython-311.opt-1.pyc
32.942 KB
-rw-r--r--
gzip.cpython-311.opt-2.pyc
28.741 KB
-rw-r--r--
gzip.cpython-311.pyc
32.942 KB
-rw-r--r--
hashlib.cpython-311.opt-1.pyc
12.063 KB
-rw-r--r--
hashlib.cpython-311.opt-2.pyc
11.097 KB
-rw-r--r--
hashlib.cpython-311.pyc
12.063 KB
-rw-r--r--
heapq.cpython-311.opt-1.pyc
20.107 KB
-rw-r--r--
heapq.cpython-311.opt-2.pyc
17.089 KB
-rw-r--r--
heapq.cpython-311.pyc
20.107 KB
-rw-r--r--
hmac.cpython-311.opt-1.pyc
11.216 KB
-rw-r--r--
hmac.cpython-311.opt-2.pyc
8.806 KB
-rw-r--r--
hmac.cpython-311.pyc
11.216 KB
-rw-r--r--
imaplib.cpython-311.opt-1.pyc
65.278 KB
-rw-r--r--
imaplib.cpython-311.opt-2.pyc
53.265 KB
-rw-r--r--
imaplib.cpython-311.pyc
67.445 KB
-rw-r--r--
imghdr.cpython-311.opt-1.pyc
7.671 KB
-rw-r--r--
imghdr.cpython-311.opt-2.pyc
7.515 KB
-rw-r--r--
imghdr.cpython-311.pyc
7.671 KB
-rw-r--r--
imp.cpython-311.opt-1.pyc
16.088 KB
-rw-r--r--
imp.cpython-311.opt-2.pyc
13.854 KB
-rw-r--r--
imp.cpython-311.pyc
16.088 KB
-rw-r--r--
inspect.cpython-311.opt-1.pyc
137.98 KB
-rw-r--r--
inspect.cpython-311.opt-2.pyc
113.197 KB
-rw-r--r--
inspect.cpython-311.pyc
138.342 KB
-rw-r--r--
io.cpython-311.opt-1.pyc
4.934 KB
-rw-r--r--
io.cpython-311.opt-2.pyc
3.479 KB
-rw-r--r--
io.cpython-311.pyc
4.934 KB
-rw-r--r--
ipaddress.cpython-311.opt-1.pyc
97.349 KB
-rw-r--r--
ipaddress.cpython-311.opt-2.pyc
72.501 KB
-rw-r--r--
ipaddress.cpython-311.pyc
97.349 KB
-rw-r--r--
keyword.cpython-311.opt-1.pyc
1.059 KB
-rw-r--r--
keyword.cpython-311.opt-2.pyc
0.659 KB
-rw-r--r--
keyword.cpython-311.pyc
1.059 KB
-rw-r--r--
linecache.cpython-311.opt-1.pyc
7.285 KB
-rw-r--r--
linecache.cpython-311.opt-2.pyc
6.124 KB
-rw-r--r--
linecache.cpython-311.pyc
7.285 KB
-rw-r--r--
locale.cpython-311.opt-1.pyc
62.905 KB
-rw-r--r--
locale.cpython-311.opt-2.pyc
58.563 KB
-rw-r--r--
locale.cpython-311.pyc
62.905 KB
-rw-r--r--
lzma.cpython-311.opt-1.pyc
16.341 KB
-rw-r--r--
lzma.cpython-311.opt-2.pyc
10.389 KB
-rw-r--r--
lzma.cpython-311.pyc
16.341 KB
-rw-r--r--
mailbox.cpython-311.opt-1.pyc
121.61 KB
-rw-r--r--
mailbox.cpython-311.opt-2.pyc
116.258 KB
-rw-r--r--
mailbox.cpython-311.pyc
121.71 KB
-rw-r--r--
mailcap.cpython-311.opt-1.pyc
12.499 KB
-rw-r--r--
mailcap.cpython-311.opt-2.pyc
11.001 KB
-rw-r--r--
mailcap.cpython-311.pyc
12.499 KB
-rw-r--r--
mimetypes.cpython-311.opt-1.pyc
25.528 KB
-rw-r--r--
mimetypes.cpython-311.opt-2.pyc
19.731 KB
-rw-r--r--
mimetypes.cpython-311.pyc
25.528 KB
-rw-r--r--
modulefinder.cpython-311.opt-1.pyc
30.206 KB
-rw-r--r--
modulefinder.cpython-311.opt-2.pyc
29.345 KB
-rw-r--r--
modulefinder.cpython-311.pyc
30.307 KB
-rw-r--r--
netrc.cpython-311.opt-1.pyc
9.672 KB
-rw-r--r--
netrc.cpython-311.opt-2.pyc
9.451 KB
-rw-r--r--
netrc.cpython-311.pyc
9.672 KB
-rw-r--r--
nntplib.cpython-311.opt-1.pyc
49 KB
-rw-r--r--
nntplib.cpython-311.opt-2.pyc
37.974 KB
-rw-r--r--
nntplib.cpython-311.pyc
49 KB
-rw-r--r--
ntpath.cpython-311.opt-1.pyc
30.25 KB
-rw-r--r--
ntpath.cpython-311.opt-2.pyc
28.347 KB
-rw-r--r--
ntpath.cpython-311.pyc
30.25 KB
-rw-r--r--
nturl2path.cpython-311.opt-1.pyc
3.422 KB
-rw-r--r--
nturl2path.cpython-311.opt-2.pyc
3.025 KB
-rw-r--r--
nturl2path.cpython-311.pyc
3.422 KB
-rw-r--r--
numbers.cpython-311.opt-1.pyc
14.908 KB
-rw-r--r--
numbers.cpython-311.opt-2.pyc
11.398 KB
-rw-r--r--
numbers.cpython-311.pyc
14.908 KB
-rw-r--r--
opcode.cpython-311.opt-1.pyc
13.543 KB
-rw-r--r--
opcode.cpython-311.opt-2.pyc
13.405 KB
-rw-r--r--
opcode.cpython-311.pyc
13.543 KB
-rw-r--r--
operator.cpython-311.opt-1.pyc
18.335 KB
-rw-r--r--
operator.cpython-311.opt-2.pyc
16.17 KB
-rw-r--r--
operator.cpython-311.pyc
18.335 KB
-rw-r--r--
optparse.cpython-311.opt-1.pyc
71.9 KB
-rw-r--r--
optparse.cpython-311.opt-2.pyc
59.969 KB
-rw-r--r--
optparse.cpython-311.pyc
72.004 KB
-rw-r--r--
os.cpython-311.opt-1.pyc
47.873 KB
-rw-r--r--
os.cpython-311.opt-2.pyc
36.127 KB
-rw-r--r--
os.cpython-311.pyc
47.891 KB
-rw-r--r--
pathlib.cpython-311.opt-1.pyc
66.148 KB
-rw-r--r--
pathlib.cpython-311.opt-2.pyc
57.913 KB
-rw-r--r--
pathlib.cpython-311.pyc
66.148 KB
-rw-r--r--
pdb.cpython-311.opt-1.pyc
84.672 KB
-rw-r--r--
pdb.cpython-311.opt-2.pyc
71.254 KB
-rw-r--r--
pdb.cpython-311.pyc
84.789 KB
-rw-r--r--
pickle.cpython-311.opt-1.pyc
84.62 KB
-rw-r--r--
pickle.cpython-311.opt-2.pyc
78.941 KB
-rw-r--r--
pickle.cpython-311.pyc
84.873 KB
-rw-r--r--
pickletools.cpython-311.opt-1.pyc
82.589 KB
-rw-r--r--
pickletools.cpython-311.opt-2.pyc
73.884 KB
-rw-r--r--
pickletools.cpython-311.pyc
84.714 KB
-rw-r--r--
pipes.cpython-311.opt-1.pyc
11.701 KB
-rw-r--r--
pipes.cpython-311.opt-2.pyc
8.944 KB
-rw-r--r--
pipes.cpython-311.pyc
11.701 KB
-rw-r--r--
pkgutil.cpython-311.opt-1.pyc
30.854 KB
-rw-r--r--
pkgutil.cpython-311.opt-2.pyc
24.354 KB
-rw-r--r--
pkgutil.cpython-311.pyc
30.854 KB
-rw-r--r--
platform.cpython-311.opt-1.pyc
42.712 KB
-rw-r--r--
platform.cpython-311.opt-2.pyc
34.939 KB
-rw-r--r--
platform.cpython-311.pyc
42.712 KB
-rw-r--r--
plistlib.cpython-311.opt-1.pyc
44.731 KB
-rw-r--r--
plistlib.cpython-311.opt-2.pyc
42.36 KB
-rw-r--r--
plistlib.cpython-311.pyc
44.878 KB
-rw-r--r--
poplib.cpython-311.opt-1.pyc
20.492 KB
-rw-r--r--
poplib.cpython-311.opt-2.pyc
15.789 KB
-rw-r--r--
poplib.cpython-311.pyc
20.492 KB
-rw-r--r--
posixpath.cpython-311.opt-1.pyc
19.72 KB
-rw-r--r--
posixpath.cpython-311.opt-2.pyc
18.129 KB
-rw-r--r--
posixpath.cpython-311.pyc
19.72 KB
-rw-r--r--
pprint.cpython-311.opt-1.pyc
32.738 KB
-rw-r--r--
pprint.cpython-311.opt-2.pyc
30.638 KB
-rw-r--r--
pprint.cpython-311.pyc
32.792 KB
-rw-r--r--
profile.cpython-311.opt-1.pyc
22.949 KB
-rw-r--r--
profile.cpython-311.opt-2.pyc
20.054 KB
-rw-r--r--
profile.cpython-311.pyc
23.408 KB
-rw-r--r--
pstats.cpython-311.opt-1.pyc
40.901 KB
-rw-r--r--
pstats.cpython-311.opt-2.pyc
38.091 KB
-rw-r--r--
pstats.cpython-311.pyc
40.901 KB
-rw-r--r--
pty.cpython-311.opt-1.pyc
8.258 KB
-rw-r--r--
pty.cpython-311.opt-2.pyc
7.52 KB
-rw-r--r--
pty.cpython-311.pyc
8.258 KB
-rw-r--r--
py_compile.cpython-311.opt-1.pyc
10.537 KB
-rw-r--r--
py_compile.cpython-311.opt-2.pyc
7.303 KB
-rw-r--r--
py_compile.cpython-311.pyc
10.537 KB
-rw-r--r--
pyclbr.cpython-311.opt-1.pyc
15.521 KB
-rw-r--r--
pyclbr.cpython-311.opt-2.pyc
12.564 KB
-rw-r--r--
pyclbr.cpython-311.pyc
15.521 KB
-rw-r--r--
pydoc.cpython-311.opt-1.pyc
154.552 KB
-rw-r--r--
pydoc.cpython-311.opt-2.pyc
145.153 KB
-rw-r--r--
pydoc.cpython-311.pyc
154.61 KB
-rw-r--r--
queue.cpython-311.opt-1.pyc
16.083 KB
-rw-r--r--
queue.cpython-311.opt-2.pyc
11.921 KB
-rw-r--r--
queue.cpython-311.pyc
16.083 KB
-rw-r--r--
quopri.cpython-311.opt-1.pyc
10.235 KB
-rw-r--r--
quopri.cpython-311.opt-2.pyc
9.257 KB
-rw-r--r--
quopri.cpython-311.pyc
10.618 KB
-rw-r--r--
random.cpython-311.opt-1.pyc
33.73 KB
-rw-r--r--
random.cpython-311.opt-2.pyc
26.79 KB
-rw-r--r--
random.cpython-311.pyc
33.73 KB
-rw-r--r--
reprlib.cpython-311.opt-1.pyc
9.467 KB
-rw-r--r--
reprlib.cpython-311.opt-2.pyc
9.32 KB
-rw-r--r--
reprlib.cpython-311.pyc
9.467 KB
-rw-r--r--
rlcompleter.cpython-311.opt-1.pyc
8.814 KB
-rw-r--r--
rlcompleter.cpython-311.opt-2.pyc
6.24 KB
-rw-r--r--
rlcompleter.cpython-311.pyc
8.814 KB
-rw-r--r--
runpy.cpython-311.opt-1.pyc
15.754 KB
-rw-r--r--
runpy.cpython-311.opt-2.pyc
13.396 KB
-rw-r--r--
runpy.cpython-311.pyc
15.754 KB
-rw-r--r--
sched.cpython-311.opt-1.pyc
8.221 KB
-rw-r--r--
sched.cpython-311.opt-2.pyc
5.305 KB
-rw-r--r--
sched.cpython-311.pyc
8.221 KB
-rw-r--r--
secrets.cpython-311.opt-1.pyc
2.811 KB
-rw-r--r--
secrets.cpython-311.opt-2.pyc
1.813 KB
-rw-r--r--
secrets.cpython-311.pyc
2.811 KB
-rw-r--r--
selectors.cpython-311.opt-1.pyc
27.886 KB
-rw-r--r--
selectors.cpython-311.opt-2.pyc
23.95 KB
-rw-r--r--
selectors.cpython-311.pyc
27.886 KB
-rw-r--r--
shelve.cpython-311.opt-1.pyc
13.563 KB
-rw-r--r--
shelve.cpython-311.opt-2.pyc
9.514 KB
-rw-r--r--
shelve.cpython-311.pyc
13.563 KB
-rw-r--r--
shlex.cpython-311.opt-1.pyc
14.374 KB
-rw-r--r--
shlex.cpython-311.opt-2.pyc
13.875 KB
-rw-r--r--
shlex.cpython-311.pyc
14.374 KB
-rw-r--r--
shutil.cpython-311.opt-1.pyc
71.543 KB
-rw-r--r--
shutil.cpython-311.opt-2.pyc
59.681 KB
-rw-r--r--
shutil.cpython-311.pyc
71.543 KB
-rw-r--r--
signal.cpython-311.opt-1.pyc
5.002 KB
-rw-r--r--
signal.cpython-311.opt-2.pyc
4.798 KB
-rw-r--r--
signal.cpython-311.pyc
5.002 KB
-rw-r--r--
site.cpython-311.opt-1.pyc
29.774 KB
-rw-r--r--
site.cpython-311.opt-2.pyc
24.461 KB
-rw-r--r--
site.cpython-311.pyc
29.774 KB
-rw-r--r--
smtpd.cpython-311.opt-1.pyc
42.657 KB
-rw-r--r--
smtpd.cpython-311.opt-2.pyc
40.115 KB
-rw-r--r--
smtpd.cpython-311.pyc
42.657 KB
-rw-r--r--
smtplib.cpython-311.opt-1.pyc
52.706 KB
-rw-r--r--
smtplib.cpython-311.opt-2.pyc
36.916 KB
-rw-r--r--
smtplib.cpython-311.pyc
52.867 KB
-rw-r--r--
sndhdr.cpython-311.opt-1.pyc
12.15 KB
-rw-r--r--
sndhdr.cpython-311.opt-2.pyc
10.853 KB
-rw-r--r--
sndhdr.cpython-311.pyc
12.15 KB
-rw-r--r--
socket.cpython-311.opt-1.pyc
44.585 KB
-rw-r--r--
socket.cpython-311.opt-2.pyc
36.252 KB
-rw-r--r--
socket.cpython-311.pyc
44.628 KB
-rw-r--r--
socketserver.cpython-311.opt-1.pyc
36.203 KB
-rw-r--r--
socketserver.cpython-311.opt-2.pyc
25.883 KB
-rw-r--r--
socketserver.cpython-311.pyc
36.203 KB
-rw-r--r--
sre_compile.cpython-311.opt-1.pyc
0.81 KB
-rw-r--r--
sre_compile.cpython-311.opt-2.pyc
0.81 KB
-rw-r--r--
sre_compile.cpython-311.pyc
0.81 KB
-rw-r--r--
sre_constants.cpython-311.opt-1.pyc
0.813 KB
-rw-r--r--
sre_constants.cpython-311.opt-2.pyc
0.813 KB
-rw-r--r--
sre_constants.cpython-311.pyc
0.813 KB
-rw-r--r--
sre_parse.cpython-311.opt-1.pyc
0.806 KB
-rw-r--r--
sre_parse.cpython-311.opt-2.pyc
0.806 KB
-rw-r--r--
sre_parse.cpython-311.pyc
0.806 KB
-rw-r--r--
ssl.cpython-311.opt-1.pyc
71.892 KB
-rw-r--r--
ssl.cpython-311.opt-2.pyc
61.316 KB
-rw-r--r--
ssl.cpython-311.pyc
71.892 KB
-rw-r--r--
stat.cpython-311.opt-1.pyc
5.424 KB
-rw-r--r--
stat.cpython-311.opt-2.pyc
4.832 KB
-rw-r--r--
stat.cpython-311.pyc
5.424 KB
-rw-r--r--
statistics.cpython-311.opt-1.pyc
56.796 KB
-rw-r--r--
statistics.cpython-311.opt-2.pyc
37.721 KB
-rw-r--r--
statistics.cpython-311.pyc
57.05 KB
-rw-r--r--
string.cpython-311.opt-1.pyc
12.357 KB
-rw-r--r--
string.cpython-311.opt-2.pyc
11.284 KB
-rw-r--r--
string.cpython-311.pyc
12.357 KB
-rw-r--r--
stringprep.cpython-311.opt-1.pyc
25.851 KB
-rw-r--r--
stringprep.cpython-311.opt-2.pyc
25.633 KB
-rw-r--r--
stringprep.cpython-311.pyc
25.921 KB
-rw-r--r--
struct.cpython-311.opt-1.pyc
0.387 KB
-rw-r--r--
struct.cpython-311.opt-2.pyc
0.387 KB
-rw-r--r--
struct.cpython-311.pyc
0.387 KB
-rw-r--r--
subprocess.cpython-311.opt-1.pyc
82.698 KB
-rw-r--r--
subprocess.cpython-311.opt-2.pyc
70.994 KB
-rw-r--r--
subprocess.cpython-311.pyc
82.837 KB
-rw-r--r--
sunau.cpython-311.opt-1.pyc
26.387 KB
-rw-r--r--
sunau.cpython-311.opt-2.pyc
21.902 KB
-rw-r--r--
sunau.cpython-311.pyc
26.387 KB
-rw-r--r--
symtable.cpython-311.opt-1.pyc
18.87 KB
-rw-r--r--
symtable.cpython-311.opt-2.pyc
16.447 KB
-rw-r--r--
symtable.cpython-311.pyc
19.065 KB
-rw-r--r--
sysconfig.cpython-311.opt-1.pyc
30.957 KB
-rw-r--r--
sysconfig.cpython-311.opt-2.pyc
28.311 KB
-rw-r--r--
sysconfig.cpython-311.pyc
30.957 KB
-rw-r--r--
tabnanny.cpython-311.opt-1.pyc
12.66 KB
-rw-r--r--
tabnanny.cpython-311.opt-2.pyc
11.754 KB
-rw-r--r--
tabnanny.cpython-311.pyc
12.66 KB
-rw-r--r--
tarfile.cpython-311.opt-1.pyc
131.721 KB
-rw-r--r--
tarfile.cpython-311.opt-2.pyc
117.385 KB
-rw-r--r--
tarfile.cpython-311.pyc
131.738 KB
-rw-r--r--
telnetlib.cpython-311.opt-1.pyc
30.366 KB
-rw-r--r--
telnetlib.cpython-311.opt-2.pyc
23.203 KB
-rw-r--r--
telnetlib.cpython-311.pyc
30.366 KB
-rw-r--r--
tempfile.cpython-311.opt-1.pyc
41.186 KB
-rw-r--r--
tempfile.cpython-311.opt-2.pyc
34.718 KB
-rw-r--r--
tempfile.cpython-311.pyc
41.186 KB
-rw-r--r--
textwrap.cpython-311.opt-1.pyc
19.13 KB
-rw-r--r--
textwrap.cpython-311.opt-2.pyc
12.165 KB
-rw-r--r--
textwrap.cpython-311.pyc
19.151 KB
-rw-r--r--
this.cpython-311.opt-1.pyc
1.574 KB
-rw-r--r--
this.cpython-311.opt-2.pyc
1.574 KB
-rw-r--r--
this.cpython-311.pyc
1.574 KB
-rw-r--r--
threading.cpython-311.opt-1.pyc
67.582 KB
-rw-r--r--
threading.cpython-311.opt-2.pyc
50.04 KB
-rw-r--r--
threading.cpython-311.pyc
68.679 KB
-rw-r--r--
timeit.cpython-311.opt-1.pyc
16.082 KB
-rw-r--r--
timeit.cpython-311.opt-2.pyc
10.4 KB
-rw-r--r--
timeit.cpython-311.pyc
16.082 KB
-rw-r--r--
token.cpython-311.opt-1.pyc
3.651 KB
-rw-r--r--
token.cpython-311.opt-2.pyc
3.62 KB
-rw-r--r--
token.cpython-311.pyc
3.651 KB
-rw-r--r--
tokenize.cpython-311.opt-1.pyc
29.594 KB
-rw-r--r--
tokenize.cpython-311.opt-2.pyc
25.874 KB
-rw-r--r--
tokenize.cpython-311.pyc
29.662 KB
-rw-r--r--
trace.cpython-311.opt-1.pyc
35.135 KB
-rw-r--r--
trace.cpython-311.opt-2.pyc
32.309 KB
-rw-r--r--
trace.cpython-311.pyc
35.135 KB
-rw-r--r--
traceback.cpython-311.opt-1.pyc
47.55 KB
-rw-r--r--
traceback.cpython-311.opt-2.pyc
37.815 KB
-rw-r--r--
traceback.cpython-311.pyc
47.595 KB
-rw-r--r--
tracemalloc.cpython-311.opt-1.pyc
28.418 KB
-rw-r--r--
tracemalloc.cpython-311.opt-2.pyc
27.082 KB
-rw-r--r--
tracemalloc.cpython-311.pyc
28.418 KB
-rw-r--r--
tty.cpython-311.opt-1.pyc
1.993 KB
-rw-r--r--
tty.cpython-311.opt-2.pyc
1.897 KB
-rw-r--r--
tty.cpython-311.pyc
1.993 KB
-rw-r--r--
types.cpython-311.opt-1.pyc
14.487 KB
-rw-r--r--
types.cpython-311.opt-2.pyc
13.109 KB
-rw-r--r--
types.cpython-311.pyc
14.487 KB
-rw-r--r--
typing.cpython-311.opt-1.pyc
157.068 KB
-rw-r--r--
typing.cpython-311.opt-2.pyc
120.813 KB
-rw-r--r--
typing.cpython-311.pyc
157.882 KB
-rw-r--r--
uu.cpython-311.opt-1.pyc
8.604 KB
-rw-r--r--
uu.cpython-311.opt-2.pyc
8.378 KB
-rw-r--r--
uu.cpython-311.pyc
8.604 KB
-rw-r--r--
uuid.cpython-311.opt-1.pyc
32.037 KB
-rw-r--r--
uuid.cpython-311.opt-2.pyc
24.589 KB
-rw-r--r--
uuid.cpython-311.pyc
32.308 KB
-rw-r--r--
warnings.cpython-311.opt-1.pyc
23.5 KB
-rw-r--r--
warnings.cpython-311.opt-2.pyc
20.866 KB
-rw-r--r--
warnings.cpython-311.pyc
24.489 KB
-rw-r--r--
wave.cpython-311.opt-1.pyc
31.524 KB
-rw-r--r--
wave.cpython-311.opt-2.pyc
25.165 KB
-rw-r--r--
wave.cpython-311.pyc
31.594 KB
-rw-r--r--
weakref.cpython-311.opt-1.pyc
34.113 KB
-rw-r--r--
weakref.cpython-311.opt-2.pyc
30.948 KB
-rw-r--r--
weakref.cpython-311.pyc
34.153 KB
-rw-r--r--
webbrowser.cpython-311.opt-1.pyc
32.041 KB
-rw-r--r--
webbrowser.cpython-311.opt-2.pyc
29.746 KB
-rw-r--r--
webbrowser.cpython-311.pyc
32.066 KB
-rw-r--r--
xdrlib.cpython-311.opt-1.pyc
12.85 KB
-rw-r--r--
xdrlib.cpython-311.opt-2.pyc
12.379 KB
-rw-r--r--
xdrlib.cpython-311.pyc
12.85 KB
-rw-r--r--
zipapp.cpython-311.opt-1.pyc
11.284 KB
-rw-r--r--
zipapp.cpython-311.opt-2.pyc
10.159 KB
-rw-r--r--
zipapp.cpython-311.pyc
11.284 KB
-rw-r--r--
zipfile.cpython-311.opt-1.pyc
116.277 KB
-rw-r--r--
zipfile.cpython-311.opt-2.pyc
106.737 KB
-rw-r--r--
zipfile.cpython-311.pyc
116.327 KB
-rw-r--r--
zipimport.cpython-311.opt-1.pyc
28.989 KB
-rw-r--r--
zipimport.cpython-311.opt-2.pyc
25.389 KB
-rw-r--r--
zipimport.cpython-311.pyc
29.104 KB
-rw-r--r--