Psyduck - 可達鴨 之 鴨力山大2


Server : LiteSpeed
System : Linux premium217.web-hosting.com 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
User : alloknri ( 880)
PHP Version : 8.1.34
Disable Function : NONE
Directory :  /opt/alt/python27/lib64/python2.7/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //opt/alt/python27/lib64/python2.7/random.py
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* Without a direct way to compute N steps forward, the semantics of
  jumpahead(n) are weakened to simply jump to another distant state and rely
  on the large period to avoid overlapping sequences.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from __future__ import division
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from binascii import hexlify as _hexlify
import hashlib as _hashlib

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.  Especially useful for multi-threaded programs, creating
    a different instance of Random for each thread, and using the jumpahead()
    method to ensure that the generated sequences seen by each thread don't
    overlap.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods: random(), seed(), getstate(), setstate() and jumpahead().
    Optionally, implement a getrandbits() method so that randrange() can cover
    arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def seed(self, a=None):
        """Initialize internal state of the random number generator.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If a is not None or is an int or long, hash(a) is used instead.
        Hash values for some types are nondeterministic when the
        PYTHONHASHSEED environment variable is enabled.
        """

        if a is None:
            try:
                # Seed with enough bytes to span the 19937 bit
                # state space for the Mersenne Twister
                a = long(_hexlify(_urandom(2500)), 16)
            except NotImplementedError:
                import time
                a = long(time.time() * 256) # use fractional seconds

        super(Random, self).seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super(Random, self).getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super(Random, self).setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple( long(x) % (2**32) for x in internalstate )
            except ValueError, e:
                raise TypeError, e
            super(Random, self).setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

    def jumpahead(self, n):
        """Change the internal state to one that is likely far away
        from the current state.  This method will not be in Py3.x,
        so it is better to simply reseed.
        """
        # The super.jumpahead() method uses shuffling to change state,
        # so it needs a large and "interesting" n to work with.  Here,
        # we use hashing to create a large n for the shuffle.
        s = repr(n) + repr(self.getstate())
        n = int(_hashlib.new('sha512', s).hexdigest(), 16)
        super(Random, self).jumpahead(n)

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int, _maxwidth=1L<<BPF):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError, "non-integer arg 1 for randrange()"
        if stop is None:
            if istart > 0:
                if istart >= _maxwidth:
                    return self._randbelow(istart)
                return _int(self.random() * istart)
            raise ValueError, "empty range for randrange()"

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError, "non-integer stop for randrange()"
        width = istop - istart
        if step == 1 and width > 0:
            # Note that
            #     int(istart + self.random()*width)
            # instead would be incorrect.  For example, consider istart
            # = -2 and istop = 0.  Then the guts would be in
            # -2.0 to 0.0 exclusive on both ends (ignoring that random()
            # might return 0.0), and because int() truncates toward 0, the
            # final result would be -1 or 0 (instead of -2 or -1).
            #     istart + int(self.random()*width)
            # would also be incorrect, for a subtler reason:  the RHS
            # can return a long, and then randrange() would also return
            # a long, but we're supposed to return an int (for backward
            # compatibility).

            if width >= _maxwidth:
                return _int(istart + self._randbelow(width))
            return _int(istart + _int(self.random()*width))
        if step == 1:
            raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError, "non-integer step for randrange()"
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError, "zero step for randrange()"

        if n <= 0:
            raise ValueError, "empty range for randrange()"

        if n >= _maxwidth:
            return istart + istep*self._randbelow(n)
        return istart + istep*_int(self.random() * n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow(self, n, _log=_log, _int=int, _maxwidth=1L<<BPF,
                   _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
        """Return a random int in the range [0,n)

        Handles the case where n has more bits than returned
        by a single call to the underlying generator.
        """

        try:
            getrandbits = self.getrandbits
        except AttributeError:
            pass
        else:
            # Only call self.getrandbits if the original random() builtin method
            # has not been overridden or if a new getrandbits() was supplied.
            # This assures that the two methods correspond.
            if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
                k = _int(1.00001 + _log(n-1, 2.0))   # 2**k > n-1 > 2**(k-2)
                r = getrandbits(k)
                while r >= n:
                    r = getrandbits(k)
                return r
        if n >= _maxwidth:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large")
        return _int(self.random() * n)

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        return seq[int(self.random() * len(seq))]  # raises IndexError if seq is empty

    def shuffle(self, x, random=None):
        """x, random=random.random -> shuffle list x in place; return None.

        Optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.

        """

        if random is None:
            random = self.random
        _int = int
        for i in reversed(xrange(1, len(x))):
            # pick an element in x[:i+1] with which to exchange x[i]
            j = _int(random() * (i+1))
            x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use xrange as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(xrange(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("sample larger than population")
        random = self.random
        _int = int
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize or hasattr(population, "keys"):
            # An n-length list is smaller than a k-length set, or this is a
            # mapping type so the other algorithm wouldn't work.
            pool = list(population)
            for i in xrange(k):         # invariant:  non-selected at [0,n-i)
                j = _int(random() * (n-i))
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            try:
                selected = set()
                selected_add = selected.add
                for i in xrange(k):
                    j = _int(random() * n)
                    while j in selected:
                        j = _int(random() * n)
                    selected_add(j)
                    result[i] = population[j]
            except (TypeError, KeyError):   # handle (at least) sets
                if isinstance(population, list):
                    raise
                return self.sample(tuple(population), k)
        return result

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * (u * c) ** 0.5

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / pow(u, 1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * pow(-_log(u), 1.0/beta)

## -------------------- Wichmann-Hill -------------------

class WichmannHill(Random):

    VERSION = 1     # used by getstate/setstate

    def seed(self, a=None):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If a is not None or an int or long, hash(a) is used instead.

        If a is an int or long, a is used directly.  Distinct values between
        0 and 27814431486575L inclusive are guaranteed to yield distinct
        internal states (this guarantee is specific to the default
        Wichmann-Hill generator).
        """

        if a is None:
            try:
                a = long(_hexlify(_urandom(16)), 16)
            except NotImplementedError:
                import time
                a = long(time.time() * 256) # use fractional seconds

        if not isinstance(a, (int, long)):
            a = hash(a)

        a, x = divmod(a, 30268)
        a, y = divmod(a, 30306)
        a, z = divmod(a, 30322)
        self._seed = int(x)+1, int(y)+1, int(z)+1

        self.gauss_next = None

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""

        # Wichman-Hill random number generator.
        #
        # Wichmann, B. A. & Hill, I. D. (1982)
        # Algorithm AS 183:
        # An efficient and portable pseudo-random number generator
        # Applied Statistics 31 (1982) 188-190
        #
        # see also:
        #        Correction to Algorithm AS 183
        #        Applied Statistics 33 (1984) 123
        #
        #        McLeod, A. I. (1985)
        #        A remark on Algorithm AS 183
        #        Applied Statistics 34 (1985),198-200

        # This part is thread-unsafe:
        # BEGIN CRITICAL SECTION
        x, y, z = self._seed
        x = (171 * x) % 30269
        y = (172 * y) % 30307
        z = (170 * z) % 30323
        self._seed = x, y, z
        # END CRITICAL SECTION

        # Note:  on a platform using IEEE-754 double arithmetic, this can
        # never return 0.0 (asserted by Tim; proof too long for a comment).
        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, self._seed, self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 1:
            version, self._seed, self.gauss_next = state
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

    def jumpahead(self, n):
        """Act as if n calls to random() were made, but quickly.

        n is an int, greater than or equal to 0.

        Example use:  If you have 2 threads and know that each will
        consume no more than a million random numbers, create two Random
        objects r1 and r2, then do
            r2.setstate(r1.getstate())
            r2.jumpahead(1000000)
        Then r1 and r2 will use guaranteed-disjoint segments of the full
        period.
        """

        if not n >= 0:
            raise ValueError("n must be >= 0")
        x, y, z = self._seed
        x = int(x * pow(171, n, 30269)) % 30269
        y = int(y * pow(172, n, 30307)) % 30307
        z = int(z * pow(170, n, 30323)) % 30323
        self._seed = x, y, z

    def __whseed(self, x=0, y=0, z=0):
        """Set the Wichmann-Hill seed from (x, y, z).

        These must be integers in the range [0, 256).
        """

        if not type(x) == type(y) == type(z) == int:
            raise TypeError('seeds must be integers')
        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
            raise ValueError('seeds must be in range(0, 256)')
        if 0 == x == y == z:
            # Initialize from current time
            import time
            t = long(time.time() * 256)
            t = int((t&0xffffff) ^ (t>>24))
            t, x = divmod(t, 256)
            t, y = divmod(t, 256)
            t, z = divmod(t, 256)
        # Zero is a poor seed, so substitute 1
        self._seed = (x or 1, y or 1, z or 1)

        self.gauss_next = None

    def whseed(self, a=None):
        """Seed from hashable object's hash code.

        None or no argument seeds from current time.  It is not guaranteed
        that objects with distinct hash codes lead to distinct internal
        states.

        This is obsolete, provided for compatibility with the seed routine
        used prior to Python 2.1.  Use the .seed() method instead.
        """

        if a is None:
            self.__whseed()
            return
        a = hash(a)
        a, x = divmod(a, 256)
        a, y = divmod(a, 256)
        a, z = divmod(a, 256)
        x = (x + a) % 256 or 1
        y = (y + a) % 256 or 1
        z = (z + a) % 256 or 1
        self.__whseed(x, y, z)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates a long int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        if k != int(k):
            raise TypeError('number of bits should be an integer')
        bytes = (k + 7) // 8                    # bits / 8 and rounded up
        x = long(_hexlify(_urandom(bytes)), 16)
        return x >> (bytes * 8 - k)             # trim excess bits

    def _stub(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None
    seed = jumpahead = _stub

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print n, 'times', func.__name__
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print round(t1-t0, 3), 'sec,',
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print 'avg %g, stddev %g, min %g, max %g' % \
              (avg, stddev, smallest, largest)


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
getrandbits = _inst.getrandbits

if __name__ == '__main__':
    _test()
Name
Size
Permissions
Options
bsddb
--
drwxr-xr-x
compiler
--
drwxr-xr-x
config
--
drwxr-xr-x
ctypes
--
drwxr-xr-x
curses
--
drwxr-xr-x
distutils
--
drwxr-xr-x
email
--
drwxr-xr-x
encodings
--
drwxr-xr-x
ensurepip
--
drwxr-xr-x
hotshot
--
drwxr-xr-x
idlelib
--
drwxr-xr-x
importlib
--
drwxr-xr-x
json
--
drwxr-xr-x
lib-dynload
--
drwxr-xr-x
lib2to3
--
drwxr-xr-x
logging
--
drwxr-xr-x
multiprocessing
--
drwxr-xr-x
plat-linux2
--
drwxr-xr-x
pydoc_data
--
drwxr-xr-x
site-packages
--
drwxr-xr-x
sqlite3
--
drwxr-xr-x
test
--
drwxr-xr-x
unittest
--
drwxr-xr-x
wsgiref
--
drwxr-xr-x
xml
--
drwxr-xr-x
BaseHTTPServer.py
22.214 KB
-rw-r--r--
BaseHTTPServer.pyc
21.467 KB
-rw-r--r--
BaseHTTPServer.pyo
21.467 KB
-rw-r--r--
Bastion.py
5.609 KB
-rw-r--r--
Bastion.pyc
6.694 KB
-rw-r--r--
Bastion.pyo
6.694 KB
-rw-r--r--
CGIHTTPServer.py
12.782 KB
-rw-r--r--
CGIHTTPServer.pyc
10.925 KB
-rw-r--r--
CGIHTTPServer.pyo
10.925 KB
-rw-r--r--
ConfigParser.py
27.096 KB
-rw-r--r--
ConfigParser.pyc
25.371 KB
-rw-r--r--
ConfigParser.pyo
25.371 KB
-rw-r--r--
Cookie.py
25.916 KB
-rw-r--r--
Cookie.pyc
22.609 KB
-rw-r--r--
Cookie.pyo
22.609 KB
-rw-r--r--
DocXMLRPCServer.py
10.516 KB
-rw-r--r--
DocXMLRPCServer.pyc
10.197 KB
-rw-r--r--
DocXMLRPCServer.pyo
10.091 KB
-rw-r--r--
HTMLParser.py
16.769 KB
-rw-r--r--
HTMLParser.pyc
13.812 KB
-rw-r--r--
HTMLParser.pyo
13.514 KB
-rw-r--r--
MimeWriter.py
6.33 KB
-rw-r--r--
MimeWriter.pyc
7.306 KB
-rw-r--r--
MimeWriter.pyo
7.306 KB
-rw-r--r--
Queue.py
8.376 KB
-rw-r--r--
Queue.pyc
9.559 KB
-rw-r--r--
Queue.pyo
9.559 KB
-rw-r--r--
SimpleHTTPServer.py
7.81 KB
-rw-r--r--
SimpleHTTPServer.pyc
7.962 KB
-rw-r--r--
SimpleHTTPServer.pyo
7.962 KB
-rw-r--r--
SimpleXMLRPCServer.py
25.207 KB
-rw-r--r--
SimpleXMLRPCServer.pyc
22.784 KB
-rw-r--r--
SimpleXMLRPCServer.pyo
22.784 KB
-rw-r--r--
SocketServer.py
23.387 KB
-rw-r--r--
SocketServer.pyc
24.246 KB
-rw-r--r--
SocketServer.pyo
24.246 KB
-rw-r--r--
StringIO.py
10.412 KB
-rw-r--r--
StringIO.pyc
11.452 KB
-rw-r--r--
StringIO.pyo
11.452 KB
-rw-r--r--
UserDict.py
6.895 KB
-rw-r--r--
UserDict.pyc
10.055 KB
-rw-r--r--
UserDict.pyo
10.055 KB
-rw-r--r--
UserList.py
3.559 KB
-rw-r--r--
UserList.pyc
6.854 KB
-rw-r--r--
UserList.pyo
6.854 KB
-rw-r--r--
UserString.py
9.47 KB
-rwxr-xr-x
UserString.pyc
15.379 KB
-rw-r--r--
UserString.pyo
15.379 KB
-rw-r--r--
_LWPCookieJar.py
6.399 KB
-rw-r--r--
_LWPCookieJar.pyc
5.383 KB
-rw-r--r--
_LWPCookieJar.pyo
5.383 KB
-rw-r--r--
_MozillaCookieJar.py
5.661 KB
-rw-r--r--
_MozillaCookieJar.pyc
4.407 KB
-rw-r--r--
_MozillaCookieJar.pyo
4.369 KB
-rw-r--r--
__future__.py
4.277 KB
-rw-r--r--
__future__.pyc
4.2 KB
-rw-r--r--
__future__.pyo
4.2 KB
-rw-r--r--
__phello__.foo.py
0.063 KB
-rw-r--r--
__phello__.foo.pyc
0.135 KB
-rw-r--r--
__phello__.foo.pyo
0.135 KB
-rw-r--r--
_abcoll.py
18.183 KB
-rw-r--r--
_abcoll.pyc
26.4 KB
-rw-r--r--
_abcoll.pyo
26.4 KB
-rw-r--r--
_osx_support.py
18.652 KB
-rw-r--r--
_osx_support.pyc
11.724 KB
-rw-r--r--
_osx_support.pyo
11.724 KB
-rw-r--r--
_pyio.py
67.998 KB
-rw-r--r--
_pyio.pyc
65.406 KB
-rw-r--r--
_pyio.pyo
65.406 KB
-rw-r--r--
_strptime.py
20.242 KB
-rw-r--r--
_strptime.pyc
15.07 KB
-rw-r--r--
_strptime.pyo
15.07 KB
-rw-r--r--
_sysconfigdata.py
20.667 KB
-rw-r--r--
_sysconfigdata.pyc
23.708 KB
-rw-r--r--
_sysconfigdata.pyo
23.708 KB
-rw-r--r--
_threading_local.py
7.09 KB
-rw-r--r--
_threading_local.pyc
6.338 KB
-rw-r--r--
_threading_local.pyo
6.338 KB
-rw-r--r--
_weakrefset.py
5.772 KB
-rw-r--r--
_weakrefset.pyc
10.061 KB
-rw-r--r--
_weakrefset.pyo
10.061 KB
-rw-r--r--
abc.py
6.978 KB
-rw-r--r--
abc.pyc
6.139 KB
-rw-r--r--
abc.pyo
6.084 KB
-rw-r--r--
aifc.py
33.769 KB
-rw-r--r--
aifc.pyc
30.672 KB
-rw-r--r--
aifc.pyo
30.672 KB
-rw-r--r--
antigravity.py
0.059 KB
-rw-r--r--
antigravity.pyc
0.211 KB
-rw-r--r--
antigravity.pyo
0.211 KB
-rw-r--r--
anydbm.py
2.601 KB
-rw-r--r--
anydbm.pyc
2.772 KB
-rw-r--r--
anydbm.pyo
2.772 KB
-rw-r--r--
argparse.py
87.137 KB
-rw-r--r--
argparse.pyc
64.826 KB
-rw-r--r--
argparse.pyo
64.665 KB
-rw-r--r--
ast.py
11.528 KB
-rw-r--r--
ast.pyc
12.939 KB
-rw-r--r--
ast.pyo
12.939 KB
-rw-r--r--
asynchat.py
11.31 KB
-rw-r--r--
asynchat.pyc
8.984 KB
-rw-r--r--
asynchat.pyo
8.984 KB
-rw-r--r--
asyncore.py
20.452 KB
-rw-r--r--
asyncore.pyc
19.199 KB
-rw-r--r--
asyncore.pyo
19.199 KB
-rw-r--r--
atexit.py
1.665 KB
-rw-r--r--
atexit.pyc
2.228 KB
-rw-r--r--
atexit.pyo
2.228 KB
-rw-r--r--
audiodev.py
7.419 KB
-rw-r--r--
audiodev.pyc
8.613 KB
-rw-r--r--
audiodev.pyo
8.613 KB
-rw-r--r--
base64.py
11.539 KB
-rwxr-xr-x
base64.pyc
11.261 KB
-rw-r--r--
base64.pyo
11.261 KB
-rw-r--r--
bdb.py
21.205 KB
-rw-r--r--
bdb.pyc
19.428 KB
-rw-r--r--
bdb.pyo
19.428 KB
-rw-r--r--
binhex.py
14.354 KB
-rw-r--r--
binhex.pyc
15.745 KB
-rw-r--r--
binhex.pyo
15.745 KB
-rw-r--r--
bisect.py
2.534 KB
-rw-r--r--
bisect.pyc
3.063 KB
-rw-r--r--
bisect.pyo
3.063 KB
-rw-r--r--
cProfile.py
6.429 KB
-rwxr-xr-x
cProfile.pyc
6.423 KB
-rw-r--r--
cProfile.pyo
6.423 KB
-rw-r--r--
calendar.py
22.836 KB
-rw-r--r--
calendar.pyc
28.262 KB
-rw-r--r--
calendar.pyo
28.262 KB
-rw-r--r--
cgi.py
34.968 KB
-rwxr-xr-x
cgi.pyc
33.236 KB
-rw-r--r--
cgi.pyo
33.236 KB
-rw-r--r--
cgitb.py
11.89 KB
-rw-r--r--
cgitb.pyc
12.082 KB
-rw-r--r--
cgitb.pyo
12.082 KB
-rw-r--r--
chunk.py
5.292 KB
-rw-r--r--
chunk.pyc
5.61 KB
-rw-r--r--
chunk.pyo
5.61 KB
-rw-r--r--
cmd.py
14.674 KB
-rw-r--r--
cmd.pyc
13.977 KB
-rw-r--r--
cmd.pyo
13.977 KB
-rw-r--r--
code.py
9.95 KB
-rw-r--r--
code.pyc
10.295 KB
-rw-r--r--
code.pyo
10.295 KB
-rw-r--r--
codecs.py
35.296 KB
-rw-r--r--
codecs.pyc
37.154 KB
-rw-r--r--
codecs.pyo
37.154 KB
-rw-r--r--
codeop.py
5.858 KB
-rw-r--r--
codeop.pyc
6.569 KB
-rw-r--r--
codeop.pyo
6.569 KB
-rw-r--r--
collections.py
27.146 KB
-rw-r--r--
collections.pyc
26.21 KB
-rw-r--r--
collections.pyo
26.16 KB
-rw-r--r--
colorsys.py
3.604 KB
-rw-r--r--
colorsys.pyc
3.999 KB
-rw-r--r--
colorsys.pyo
3.999 KB
-rw-r--r--
commands.py
2.485 KB
-rw-r--r--
commands.pyc
2.487 KB
-rw-r--r--
commands.pyo
2.487 KB
-rw-r--r--
compileall.py
7.581 KB
-rw-r--r--
compileall.pyc
6.929 KB
-rw-r--r--
compileall.pyo
6.929 KB
-rw-r--r--
contextlib.py
4.32 KB
-rw-r--r--
contextlib.pyc
4.502 KB
-rw-r--r--
contextlib.pyo
4.502 KB
-rw-r--r--
cookielib.py
63.951 KB
-rw-r--r--
cookielib.pyc
54.674 KB
-rw-r--r--
cookielib.pyo
54.49 KB
-rw-r--r--
copy.py
11.263 KB
-rw-r--r--
copy.pyc
12.215 KB
-rw-r--r--
copy.pyo
12.125 KB
-rw-r--r--
copy_reg.py
6.811 KB
-rw-r--r--
copy_reg.pyc
5.186 KB
-rw-r--r--
copy_reg.pyo
5.143 KB
-rw-r--r--
crypt.py
2.237 KB
-rw-r--r--
crypt.pyc
2.954 KB
-rw-r--r--
crypt.pyo
2.954 KB
-rw-r--r--
csv.py
16.316 KB
-rw-r--r--
csv.pyc
13.559 KB
-rw-r--r--
csv.pyo
13.559 KB
-rw-r--r--
dbhash.py
0.486 KB
-rw-r--r--
dbhash.pyc
0.727 KB
-rw-r--r--
dbhash.pyo
0.727 KB
-rw-r--r--
decimal.py
216.731 KB
-rw-r--r--
decimal.pyc
171.357 KB
-rw-r--r--
decimal.pyo
171.357 KB
-rw-r--r--
difflib.py
80.396 KB
-rw-r--r--
difflib.pyc
61.133 KB
-rw-r--r--
difflib.pyo
61.083 KB
-rw-r--r--
dircache.py
1.1 KB
-rw-r--r--
dircache.pyc
1.59 KB
-rw-r--r--
dircache.pyo
1.59 KB
-rw-r--r--
dis.py
6.347 KB
-rw-r--r--
dis.pyc
6.184 KB
-rw-r--r--
dis.pyo
6.184 KB
-rw-r--r--
doctest.py
102.632 KB
-rw-r--r--
doctest.pyc
83.213 KB
-rw-r--r--
doctest.pyo
82.933 KB
-rw-r--r--
dumbdbm.py
8.927 KB
-rw-r--r--
dumbdbm.pyc
6.829 KB
-rw-r--r--
dumbdbm.pyo
6.829 KB
-rw-r--r--
dummy_thread.py
4.314 KB
-rw-r--r--
dummy_thread.pyc
5.458 KB
-rw-r--r--
dummy_thread.pyo
5.458 KB
-rw-r--r--
dummy_threading.py
2.738 KB
-rw-r--r--
dummy_threading.pyc
1.268 KB
-rw-r--r--
dummy_threading.pyo
1.268 KB
-rw-r--r--
filecmp.py
9.363 KB
-rw-r--r--
filecmp.pyc
9.65 KB
-rw-r--r--
filecmp.pyo
9.65 KB
-rw-r--r--
fileinput.py
13.424 KB
-rw-r--r--
fileinput.pyc
14.541 KB
-rw-r--r--
fileinput.pyo
14.541 KB
-rw-r--r--
fnmatch.py
3.237 KB
-rw-r--r--
fnmatch.pyc
3.605 KB
-rw-r--r--
fnmatch.pyo
3.605 KB
-rw-r--r--
formatter.py
14.562 KB
-rw-r--r--
formatter.pyc
19.706 KB
-rw-r--r--
formatter.pyo
19.706 KB
-rw-r--r--
fpformat.py
4.621 KB
-rw-r--r--
fpformat.pyc
4.694 KB
-rw-r--r--
fpformat.pyo
4.694 KB
-rw-r--r--
fractions.py
21.865 KB
-rw-r--r--
fractions.pyc
19.744 KB
-rw-r--r--
fractions.pyo
19.744 KB
-rw-r--r--
ftplib.py
37.299 KB
-rw-r--r--
ftplib.pyc
34.816 KB
-rw-r--r--
ftplib.pyo
34.816 KB
-rw-r--r--
functools.py
4.693 KB
-rw-r--r--
functools.pyc
6.854 KB
-rw-r--r--
functools.pyo
6.854 KB
-rw-r--r--
genericpath.py
3.126 KB
-rw-r--r--
genericpath.pyc
3.574 KB
-rw-r--r--
genericpath.pyo
3.574 KB
-rw-r--r--
getopt.py
7.147 KB
-rw-r--r--
getopt.pyc
6.625 KB
-rw-r--r--
getopt.pyo
6.581 KB
-rw-r--r--
getpass.py
5.433 KB
-rw-r--r--
getpass.pyc
4.722 KB
-rw-r--r--
getpass.pyo
4.722 KB
-rw-r--r--
gettext.py
22.135 KB
-rw-r--r--
gettext.pyc
18.166 KB
-rw-r--r--
gettext.pyo
18.166 KB
-rw-r--r--
glob.py
3.041 KB
-rw-r--r--
glob.pyc
2.976 KB
-rw-r--r--
glob.pyo
2.976 KB
-rw-r--r--
gzip.py
18.582 KB
-rw-r--r--
gzip.pyc
15.26 KB
-rw-r--r--
gzip.pyo
15.26 KB
-rw-r--r--
hashlib.py
7.658 KB
-rw-r--r--
hashlib.pyc
6.861 KB
-rw-r--r--
hashlib.pyo
6.861 KB
-rw-r--r--
heapq.py
17.866 KB
-rw-r--r--
heapq.pyc
14.451 KB
-rw-r--r--
heapq.pyo
14.451 KB
-rw-r--r--
hmac.py
4.48 KB
-rw-r--r--
hmac.pyc
4.563 KB
-rw-r--r--
hmac.pyo
4.563 KB
-rw-r--r--
htmlentitydefs.py
17.633 KB
-rw-r--r--
htmlentitydefs.pyc
6.23 KB
-rw-r--r--
htmlentitydefs.pyo
6.23 KB
-rw-r--r--
htmllib.py
12.567 KB
-rw-r--r--
htmllib.pyc
20.988 KB
-rw-r--r--
htmllib.pyo
20.988 KB
-rw-r--r--
httplib.py
51.074 KB
-rw-r--r--
httplib.pyc
37.884 KB
-rw-r--r--
httplib.pyo
37.704 KB
-rw-r--r--
ihooks.py
18.541 KB
-rw-r--r--
ihooks.pyc
21.747 KB
-rw-r--r--
ihooks.pyo
21.747 KB
-rw-r--r--
imaplib.py
47.232 KB
-rw-r--r--
imaplib.pyc
45.188 KB
-rw-r--r--
imaplib.pyo
42.486 KB
-rw-r--r--
imghdr.py
3.458 KB
-rw-r--r--
imghdr.pyc
4.928 KB
-rw-r--r--
imghdr.pyo
4.928 KB
-rw-r--r--
imputil.py
25.16 KB
-rw-r--r--
imputil.pyc
15.739 KB
-rw-r--r--
imputil.pyo
15.565 KB
-rw-r--r--
inspect.py
42 KB
-rw-r--r--
inspect.pyc
40.162 KB
-rw-r--r--
inspect.pyo
40.162 KB
-rw-r--r--
io.py
3.244 KB
-rw-r--r--
io.pyc
3.568 KB
-rw-r--r--
io.pyo
3.568 KB
-rw-r--r--
keyword.py
1.958 KB
-rwxr-xr-x
keyword.pyc
2.081 KB
-rw-r--r--
keyword.pyo
2.081 KB
-rw-r--r--
linecache.py
3.933 KB
-rw-r--r--
linecache.pyc
3.271 KB
-rw-r--r--
linecache.pyo
3.271 KB
-rw-r--r--
locale.py
100.424 KB
-rw-r--r--
locale.pyc
55.689 KB
-rw-r--r--
locale.pyo
55.689 KB
-rw-r--r--
macpath.py
6.142 KB
-rw-r--r--
macpath.pyc
7.742 KB
-rw-r--r--
macpath.pyo
7.742 KB
-rw-r--r--
macurl2path.py
2.667 KB
-rw-r--r--
macurl2path.pyc
2.242 KB
-rw-r--r--
macurl2path.pyo
2.242 KB
-rw-r--r--
mailbox.py
79.336 KB
-rw-r--r--
mailbox.pyc
77.699 KB
-rw-r--r--
mailbox.pyo
77.653 KB
-rw-r--r--
mailcap.py
7.255 KB
-rw-r--r--
mailcap.pyc
7.078 KB
-rw-r--r--
mailcap.pyo
7.078 KB
-rw-r--r--
markupbase.py
14.3 KB
-rw-r--r--
markupbase.pyc
9.266 KB
-rw-r--r--
markupbase.pyo
9.074 KB
-rw-r--r--
md5.py
0.35 KB
-rw-r--r--
md5.pyc
0.382 KB
-rw-r--r--
md5.pyo
0.382 KB
-rw-r--r--
mhlib.py
32.65 KB
-rw-r--r--
mhlib.pyc
33.976 KB
-rw-r--r--
mhlib.pyo
33.976 KB
-rw-r--r--
mimetools.py
7 KB
-rw-r--r--
mimetools.pyc
8.263 KB
-rw-r--r--
mimetools.pyo
8.263 KB
-rw-r--r--
mimetypes.py
20.535 KB
-rw-r--r--
mimetypes.pyc
18.297 KB
-rw-r--r--
mimetypes.pyo
18.297 KB
-rw-r--r--
mimify.py
14.678 KB
-rwxr-xr-x
mimify.pyc
11.91 KB
-rw-r--r--
mimify.pyo
11.91 KB
-rw-r--r--
modulefinder.py
23.888 KB
-rw-r--r--
modulefinder.pyc
19.123 KB
-rw-r--r--
modulefinder.pyo
19.043 KB
-rw-r--r--
multifile.py
4.707 KB
-rw-r--r--
multifile.pyc
5.483 KB
-rw-r--r--
multifile.pyo
5.442 KB
-rw-r--r--
mutex.py
1.834 KB
-rw-r--r--
mutex.pyc
2.546 KB
-rw-r--r--
mutex.pyo
2.546 KB
-rw-r--r--
netrc.py
5.75 KB
-rw-r--r--
netrc.pyc
4.718 KB
-rw-r--r--
netrc.pyo
4.718 KB
-rw-r--r--
new.py
0.596 KB
-rw-r--r--
new.pyc
0.854 KB
-rw-r--r--
new.pyo
0.854 KB
-rw-r--r--
nntplib.py
20.967 KB
-rw-r--r--
nntplib.pyc
21.109 KB
-rw-r--r--
nntplib.pyo
21.109 KB
-rw-r--r--
ntpath.py
18.974 KB
-rw-r--r--
ntpath.pyc
13.101 KB
-rw-r--r--
ntpath.pyo
13.101 KB
-rw-r--r--
nturl2path.py
2.362 KB
-rw-r--r--
nturl2path.pyc
1.811 KB
-rw-r--r--
nturl2path.pyo
1.811 KB
-rw-r--r--
numbers.py
10.077 KB
-rw-r--r--
numbers.pyc
14.471 KB
-rw-r--r--
numbers.pyo
14.471 KB
-rw-r--r--
opcode.py
5.346 KB
-rw-r--r--
opcode.pyc
6.064 KB
-rw-r--r--
opcode.pyo
6.064 KB
-rw-r--r--
optparse.py
59.769 KB
-rw-r--r--
optparse.pyc
54.408 KB
-rw-r--r--
optparse.pyo
54.327 KB
-rw-r--r--
os.py
25.303 KB
-rw-r--r--
os.pyc
25.76 KB
-rw-r--r--
os.pyo
25.76 KB
-rw-r--r--
os2emxpath.py
4.526 KB
-rw-r--r--
os2emxpath.pyc
4.533 KB
-rw-r--r--
os2emxpath.pyo
4.533 KB
-rw-r--r--
pdb.doc
7.729 KB
-rw-r--r--
pdb.py
45.027 KB
-rwxr-xr-x
pdb.pyc
44.093 KB
-rw-r--r--
pdb.pyo
44.093 KB
-rw-r--r--
pickle.py
44.423 KB
-rw-r--r--
pickle.pyc
38.977 KB
-rw-r--r--
pickle.pyo
38.785 KB
-rw-r--r--
pickletools.py
72.776 KB
-rw-r--r--
pickletools.pyc
56.102 KB
-rw-r--r--
pickletools.pyo
55.261 KB
-rw-r--r--
pipes.py
9.357 KB
-rw-r--r--
pipes.pyc
9.293 KB
-rw-r--r--
pipes.pyo
9.293 KB
-rw-r--r--
pkgutil.py
19.769 KB
-rw-r--r--
pkgutil.pyc
18.934 KB
-rw-r--r--
pkgutil.pyo
18.934 KB
-rw-r--r--
platform.py
51.561 KB
-rwxr-xr-x
platform.pyc
37.697 KB
-rw-r--r--
platform.pyo
37.697 KB
-rw-r--r--
plistlib.py
14.829 KB
-rw-r--r--
plistlib.pyc
19.539 KB
-rw-r--r--
plistlib.pyo
19.455 KB
-rw-r--r--
popen2.py
8.219 KB
-rw-r--r--
popen2.pyc
9.017 KB
-rw-r--r--
popen2.pyo
8.976 KB
-rw-r--r--
poplib.py
12.523 KB
-rw-r--r--
poplib.pyc
13.451 KB
-rw-r--r--
poplib.pyo
13.451 KB
-rw-r--r--
posixfile.py
7.815 KB
-rw-r--r--
posixfile.pyc
7.625 KB
-rw-r--r--
posixfile.pyo
7.625 KB
-rw-r--r--
posixpath.py
13.958 KB
-rw-r--r--
posixpath.pyc
11.485 KB
-rw-r--r--
posixpath.pyo
11.485 KB
-rw-r--r--
pprint.py
11.501 KB
-rw-r--r--
pprint.pyc
10.196 KB
-rw-r--r--
pprint.pyo
10.023 KB
-rw-r--r--
profile.py
22.257 KB
-rwxr-xr-x
profile.pyc
16.565 KB
-rw-r--r--
profile.pyo
16.324 KB
-rw-r--r--
pstats.py
26.086 KB
-rw-r--r--
pstats.pyc
25.188 KB
-rw-r--r--
pstats.pyo
25.188 KB
-rw-r--r--
pty.py
4.939 KB
-rw-r--r--
pty.pyc
4.977 KB
-rw-r--r--
pty.pyo
4.977 KB
-rw-r--r--
py_compile.py
5.797 KB
-rw-r--r--
py_compile.pyc
6.366 KB
-rw-r--r--
py_compile.pyo
6.366 KB
-rw-r--r--
pyclbr.py
13.074 KB
-rw-r--r--
pyclbr.pyc
9.59 KB
-rw-r--r--
pyclbr.pyo
9.59 KB
-rw-r--r--
pydoc.py
93.434 KB
-rwxr-xr-x
pydoc.pyc
92.689 KB
-rw-r--r--
pydoc.pyo
92.627 KB
-rw-r--r--
quopri.py
6.814 KB
-rwxr-xr-x
quopri.pyc
6.56 KB
-rw-r--r--
quopri.pyo
6.56 KB
-rw-r--r--
random.py
31.696 KB
-rw-r--r--
random.pyc
25.647 KB
-rw-r--r--
random.pyo
25.647 KB
-rw-r--r--
re.py
13.108 KB
-rw-r--r--
re.pyc
13.365 KB
-rw-r--r--
re.pyo
13.365 KB
-rw-r--r--
repr.py
4.195 KB
-rw-r--r--
repr.pyc
5.475 KB
-rw-r--r--
repr.pyo
5.475 KB
-rw-r--r--
rexec.py
19.676 KB
-rw-r--r--
rexec.pyc
23.998 KB
-rw-r--r--
rexec.pyo
23.998 KB
-rw-r--r--
rfc822.py
32.756 KB
-rw-r--r--
rfc822.pyc
31.829 KB
-rw-r--r--
rfc822.pyo
31.829 KB
-rw-r--r--
rlcompleter.py
5.851 KB
-rw-r--r--
rlcompleter.pyc
6.037 KB
-rw-r--r--
rlcompleter.pyo
6.037 KB
-rw-r--r--
robotparser.py
7.515 KB
-rw-r--r--
robotparser.pyc
8.12 KB
-rw-r--r--
robotparser.pyo
8.12 KB
-rw-r--r--
runpy.py
10.821 KB
-rw-r--r--
runpy.pyc
8.851 KB
-rw-r--r--
runpy.pyo
8.851 KB
-rw-r--r--
sched.py
4.969 KB
-rw-r--r--
sched.pyc
4.991 KB
-rw-r--r--
sched.pyo
4.991 KB
-rw-r--r--
sets.py
18.604 KB
-rw-r--r--
sets.pyc
17.21 KB
-rw-r--r--
sets.pyo
17.21 KB
-rw-r--r--
sgmllib.py
17.465 KB
-rw-r--r--
sgmllib.pyc
15.671 KB
-rw-r--r--
sgmllib.pyo
15.671 KB
-rw-r--r--
sha.py
0.384 KB
-rw-r--r--
sha.pyc
0.424 KB
-rw-r--r--
sha.pyo
0.424 KB
-rw-r--r--
shelve.py
7.986 KB
-rw-r--r--
shelve.pyc
10.358 KB
-rw-r--r--
shelve.pyo
10.358 KB
-rw-r--r--
shlex.py
10.902 KB
-rw-r--r--
shlex.pyc
7.546 KB
-rw-r--r--
shlex.pyo
7.546 KB
-rw-r--r--
shutil.py
19.405 KB
-rw-r--r--
shutil.pyc
19.188 KB
-rw-r--r--
shutil.pyo
19.188 KB
-rw-r--r--
site.py
19.177 KB
-rw-r--r--
site.pyc
19.354 KB
-rw-r--r--
site.pyo
19.354 KB
-rw-r--r--
smtpd.py
18.117 KB
-rwxr-xr-x
smtpd.pyc
15.904 KB
-rw-r--r--
smtpd.pyo
15.904 KB
-rw-r--r--
smtplib.py
31.391 KB
-rwxr-xr-x
smtplib.pyc
30.292 KB
-rw-r--r--
smtplib.pyo
30.292 KB
-rw-r--r--
sndhdr.py
5.833 KB
-rw-r--r--
sndhdr.pyc
7.404 KB
-rw-r--r--
sndhdr.pyo
7.404 KB
-rw-r--r--
socket.py
20.132 KB
-rw-r--r--
socket.pyc
16.154 KB
-rw-r--r--
socket.pyo
16.07 KB
-rw-r--r--
sre.py
0.375 KB
-rw-r--r--
sre.pyc
0.52 KB
-rw-r--r--
sre.pyo
0.52 KB
-rw-r--r--
sre_compile.py
19.358 KB
-rw-r--r--
sre_compile.pyc
12.456 KB
-rw-r--r--
sre_compile.pyo
12.304 KB
-rw-r--r--
sre_constants.py
7.028 KB
-rw-r--r--
sre_constants.pyc
6.113 KB
-rw-r--r--
sre_constants.pyo
6.113 KB
-rw-r--r--
sre_parse.py
29.98 KB
-rw-r--r--
sre_parse.pyc
21.117 KB
-rw-r--r--
sre_parse.pyo
21.117 KB
-rw-r--r--
ssl.py
36.577 KB
-rw-r--r--
ssl.pyc
32.241 KB
-rw-r--r--
ssl.pyo
32.241 KB
-rw-r--r--
stat.py
1.799 KB
-rw-r--r--
stat.pyc
2.813 KB
-rw-r--r--
stat.pyo
2.813 KB
-rw-r--r--
statvfs.py
0.877 KB
-rw-r--r--
statvfs.pyc
0.618 KB
-rw-r--r--
statvfs.pyo
0.618 KB
-rw-r--r--
string.py
21.043 KB
-rw-r--r--
string.pyc
20.627 KB
-rw-r--r--
string.pyo
20.627 KB
-rw-r--r--
stringold.py
12.157 KB
-rw-r--r--
stringold.pyc
12.598 KB
-rw-r--r--
stringold.pyo
12.598 KB
-rw-r--r--
stringprep.py
13.205 KB
-rw-r--r--
stringprep.pyc
14.401 KB
-rw-r--r--
stringprep.pyo
14.331 KB
-rw-r--r--
struct.py
0.08 KB
-rw-r--r--
struct.pyc
0.246 KB
-rw-r--r--
struct.pyo
0.246 KB
-rw-r--r--
subprocess.py
49.336 KB
-rw-r--r--
subprocess.pyc
32.324 KB
-rw-r--r--
subprocess.pyo
32.324 KB
-rw-r--r--
sunau.py
16.818 KB
-rw-r--r--
sunau.pyc
18.572 KB
-rw-r--r--
sunau.pyo
18.572 KB
-rw-r--r--
sunaudio.py
1.366 KB
-rw-r--r--
sunaudio.pyc
2.004 KB
-rw-r--r--
sunaudio.pyo
2.004 KB
-rw-r--r--
symbol.py
2.019 KB
-rwxr-xr-x
symbol.pyc
2.98 KB
-rw-r--r--
symbol.pyo
2.98 KB
-rw-r--r--
symtable.py
7.263 KB
-rw-r--r--
symtable.pyc
12.145 KB
-rw-r--r--
symtable.pyo
12.017 KB
-rw-r--r--
sysconfig.py
22.316 KB
-rw-r--r--
sysconfig.pyc
17.73 KB
-rw-r--r--
sysconfig.pyo
17.728 KB
-rw-r--r--
tabnanny.py
11.083 KB
-rwxr-xr-x
tabnanny.pyc
8.308 KB
-rw-r--r--
tabnanny.pyo
8.308 KB
-rw-r--r--
tarfile.py
88.445 KB
-rw-r--r--
tarfile.pyc
76.537 KB
-rw-r--r--
tarfile.pyo
76.537 KB
-rw-r--r--
telnetlib.py
26.402 KB
-rw-r--r--
telnetlib.pyc
23.03 KB
-rw-r--r--
telnetlib.pyo
23.03 KB
-rw-r--r--
tempfile.py
19.089 KB
-rw-r--r--
tempfile.pyc
20.553 KB
-rw-r--r--
tempfile.pyo
20.553 KB
-rw-r--r--
textwrap.py
16.875 KB
-rw-r--r--
textwrap.pyc
11.991 KB
-rw-r--r--
textwrap.pyo
11.901 KB
-rw-r--r--
this.py
0.979 KB
-rw-r--r--
this.pyc
1.204 KB
-rw-r--r--
this.pyo
1.204 KB
-rw-r--r--
threading.py
46.174 KB
-rw-r--r--
threading.pyc
42.968 KB
-rw-r--r--
threading.pyo
40.845 KB
-rw-r--r--
timeit.py
12.501 KB
-rwxr-xr-x
timeit.pyc
12.063 KB
-rw-r--r--
timeit.pyo
12.063 KB
-rw-r--r--
toaiff.py
3.068 KB
-rw-r--r--
toaiff.pyc
3.084 KB
-rw-r--r--
toaiff.pyo
3.084 KB
-rw-r--r--
token.py
2.854 KB
-rw-r--r--
token.pyc
3.79 KB
-rw-r--r--
token.pyo
3.79 KB
-rw-r--r--
tokenize.py
17.073 KB
-rw-r--r--
tokenize.pyc
14.368 KB
-rw-r--r--
tokenize.pyo
14.313 KB
-rw-r--r--
trace.py
29.2 KB
-rwxr-xr-x
trace.pyc
22.69 KB
-rw-r--r--
trace.pyo
22.629 KB
-rw-r--r--
traceback.py
11.021 KB
-rw-r--r--
traceback.pyc
11.659 KB
-rw-r--r--
traceback.pyo
11.659 KB
-rw-r--r--
tty.py
0.858 KB
-rw-r--r--
tty.pyc
1.324 KB
-rw-r--r--
tty.pyo
1.324 KB
-rw-r--r--
types.py
2.045 KB
-rw-r--r--
types.pyc
2.75 KB
-rw-r--r--
types.pyo
2.75 KB
-rw-r--r--
urllib.py
58.816 KB
-rw-r--r--
urllib.pyc
51.348 KB
-rw-r--r--
urllib.pyo
51.255 KB
-rw-r--r--
urllib2.py
51.306 KB
-rw-r--r--
urllib2.pyc
47.802 KB
-rw-r--r--
urllib2.pyo
47.709 KB
-rw-r--r--
urlparse.py
16.287 KB
-rw-r--r--
urlparse.pyc
15.514 KB
-rw-r--r--
urlparse.pyo
15.514 KB
-rw-r--r--
user.py
1.589 KB
-rw-r--r--
user.pyc
1.696 KB
-rw-r--r--
user.pyo
1.696 KB
-rw-r--r--
uu.py
6.55 KB
-rwxr-xr-x
uu.pyc
4.351 KB
-rw-r--r--
uu.pyo
4.351 KB
-rw-r--r--
uuid.py
22.632 KB
-rw-r--r--
uuid.pyc
23.221 KB
-rw-r--r--
uuid.pyo
23.107 KB
-rw-r--r--
warnings.py
14.476 KB
-rw-r--r--
warnings.pyc
13.485 KB
-rw-r--r--
warnings.pyo
12.715 KB
-rw-r--r--
wave.py
18.146 KB
-rw-r--r--
wave.pyc
20.191 KB
-rw-r--r--
wave.pyo
20.051 KB
-rw-r--r--
weakref.py
14.482 KB
-rw-r--r--
weakref.pyc
16.729 KB
-rw-r--r--
weakref.pyo
16.729 KB
-rw-r--r--
webbrowser.py
22.202 KB
-rwxr-xr-x
webbrowser.pyc
19.858 KB
-rw-r--r--
webbrowser.pyo
19.814 KB
-rw-r--r--
whichdb.py
3.309 KB
-rw-r--r--
whichdb.pyc
2.214 KB
-rw-r--r--
whichdb.pyo
2.214 KB
-rw-r--r--
wsgiref.egg-info
0.183 KB
-rw-r--r--
xdrlib.py
5.927 KB
-rw-r--r--
xdrlib.pyc
10.203 KB
-rw-r--r--
xdrlib.pyo
10.203 KB
-rw-r--r--
xmllib.py
34.048 KB
-rw-r--r--
xmllib.pyc
26.904 KB
-rw-r--r--
xmllib.pyo
26.904 KB
-rw-r--r--
xmlrpclib.py
50.914 KB
-rw-r--r--
xmlrpclib.pyc
44.812 KB
-rw-r--r--
xmlrpclib.pyo
44.632 KB
-rw-r--r--
zipfile.py
58.083 KB
-rw-r--r--
zipfile.pyc
41.924 KB
-rw-r--r--
zipfile.pyo
41.924 KB
-rw-r--r--