Psyduck - 可達鴨 之 鴨力山大2


Server : LiteSpeed
System : Linux premium217.web-hosting.com 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
User : alloknri ( 880)
PHP Version : 8.1.34
Disable Function : NONE
Directory :  /lib64/python2.7/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //lib64/python2.7/random.py
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* Without a direct way to compute N steps forward, the semantics of
  jumpahead(n) are weakened to simply jump to another distant state and rely
  on the large period to avoid overlapping sequences.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from __future__ import division
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from binascii import hexlify as _hexlify
import hashlib as _hashlib

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.  Especially useful for multi-threaded programs, creating
    a different instance of Random for each thread, and using the jumpahead()
    method to ensure that the generated sequences seen by each thread don't
    overlap.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods: random(), seed(), getstate(), setstate() and jumpahead().
    Optionally, implement a getrandbits() method so that randrange() can cover
    arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def seed(self, a=None):
        """Initialize internal state of the random number generator.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If a is not None or is an int or long, hash(a) is used instead.
        Hash values for some types are nondeterministic when the
        PYTHONHASHSEED environment variable is enabled.
        """

        if a is None:
            try:
                # Seed with enough bytes to span the 19937 bit
                # state space for the Mersenne Twister
                a = long(_hexlify(_urandom(2500)), 16)
            except NotImplementedError:
                import time
                a = long(time.time() * 256) # use fractional seconds

        super(Random, self).seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super(Random, self).getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super(Random, self).setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple( long(x) % (2**32) for x in internalstate )
            except ValueError, e:
                raise TypeError, e
            super(Random, self).setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

    def jumpahead(self, n):
        """Change the internal state to one that is likely far away
        from the current state.  This method will not be in Py3.x,
        so it is better to simply reseed.
        """
        # The super.jumpahead() method uses shuffling to change state,
        # so it needs a large and "interesting" n to work with.  Here,
        # we use hashing to create a large n for the shuffle.
        s = repr(n) + repr(self.getstate())
        n = int(_hashlib.new('sha512', s).hexdigest(), 16)
        super(Random, self).jumpahead(n)

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int, _maxwidth=1L<<BPF):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError, "non-integer arg 1 for randrange()"
        if stop is None:
            if istart > 0:
                if istart >= _maxwidth:
                    return self._randbelow(istart)
                return _int(self.random() * istart)
            raise ValueError, "empty range for randrange()"

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError, "non-integer stop for randrange()"
        width = istop - istart
        if step == 1 and width > 0:
            # Note that
            #     int(istart + self.random()*width)
            # instead would be incorrect.  For example, consider istart
            # = -2 and istop = 0.  Then the guts would be in
            # -2.0 to 0.0 exclusive on both ends (ignoring that random()
            # might return 0.0), and because int() truncates toward 0, the
            # final result would be -1 or 0 (instead of -2 or -1).
            #     istart + int(self.random()*width)
            # would also be incorrect, for a subtler reason:  the RHS
            # can return a long, and then randrange() would also return
            # a long, but we're supposed to return an int (for backward
            # compatibility).

            if width >= _maxwidth:
                return _int(istart + self._randbelow(width))
            return _int(istart + _int(self.random()*width))
        if step == 1:
            raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError, "non-integer step for randrange()"
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError, "zero step for randrange()"

        if n <= 0:
            raise ValueError, "empty range for randrange()"

        if n >= _maxwidth:
            return istart + istep*self._randbelow(n)
        return istart + istep*_int(self.random() * n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow(self, n, _log=_log, _int=int, _maxwidth=1L<<BPF,
                   _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
        """Return a random int in the range [0,n)

        Handles the case where n has more bits than returned
        by a single call to the underlying generator.
        """

        try:
            getrandbits = self.getrandbits
        except AttributeError:
            pass
        else:
            # Only call self.getrandbits if the original random() builtin method
            # has not been overridden or if a new getrandbits() was supplied.
            # This assures that the two methods correspond.
            if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
                k = _int(1.00001 + _log(n-1, 2.0))   # 2**k > n-1 > 2**(k-2)
                r = getrandbits(k)
                while r >= n:
                    r = getrandbits(k)
                return r
        if n >= _maxwidth:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large")
        return _int(self.random() * n)

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        return seq[int(self.random() * len(seq))]  # raises IndexError if seq is empty

    def shuffle(self, x, random=None):
        """x, random=random.random -> shuffle list x in place; return None.

        Optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.

        """

        if random is None:
            random = self.random
        _int = int
        for i in reversed(xrange(1, len(x))):
            # pick an element in x[:i+1] with which to exchange x[i]
            j = _int(random() * (i+1))
            x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use xrange as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(xrange(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("sample larger than population")
        random = self.random
        _int = int
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize or hasattr(population, "keys"):
            # An n-length list is smaller than a k-length set, or this is a
            # mapping type so the other algorithm wouldn't work.
            pool = list(population)
            for i in xrange(k):         # invariant:  non-selected at [0,n-i)
                j = _int(random() * (n-i))
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            try:
                selected = set()
                selected_add = selected.add
                for i in xrange(k):
                    j = _int(random() * n)
                    while j in selected:
                        j = _int(random() * n)
                    selected_add(j)
                    result[i] = population[j]
            except (TypeError, KeyError):   # handle (at least) sets
                if isinstance(population, list):
                    raise
                return self.sample(tuple(population), k)
        return result

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * (u * c) ** 0.5

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / pow(u, 1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * pow(-_log(u), 1.0/beta)

## -------------------- Wichmann-Hill -------------------

class WichmannHill(Random):

    VERSION = 1     # used by getstate/setstate

    def seed(self, a=None):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If a is not None or an int or long, hash(a) is used instead.

        If a is an int or long, a is used directly.  Distinct values between
        0 and 27814431486575L inclusive are guaranteed to yield distinct
        internal states (this guarantee is specific to the default
        Wichmann-Hill generator).
        """

        if a is None:
            try:
                a = long(_hexlify(_urandom(16)), 16)
            except NotImplementedError:
                import time
                a = long(time.time() * 256) # use fractional seconds

        if not isinstance(a, (int, long)):
            a = hash(a)

        a, x = divmod(a, 30268)
        a, y = divmod(a, 30306)
        a, z = divmod(a, 30322)
        self._seed = int(x)+1, int(y)+1, int(z)+1

        self.gauss_next = None

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""

        # Wichman-Hill random number generator.
        #
        # Wichmann, B. A. & Hill, I. D. (1982)
        # Algorithm AS 183:
        # An efficient and portable pseudo-random number generator
        # Applied Statistics 31 (1982) 188-190
        #
        # see also:
        #        Correction to Algorithm AS 183
        #        Applied Statistics 33 (1984) 123
        #
        #        McLeod, A. I. (1985)
        #        A remark on Algorithm AS 183
        #        Applied Statistics 34 (1985),198-200

        # This part is thread-unsafe:
        # BEGIN CRITICAL SECTION
        x, y, z = self._seed
        x = (171 * x) % 30269
        y = (172 * y) % 30307
        z = (170 * z) % 30323
        self._seed = x, y, z
        # END CRITICAL SECTION

        # Note:  on a platform using IEEE-754 double arithmetic, this can
        # never return 0.0 (asserted by Tim; proof too long for a comment).
        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, self._seed, self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 1:
            version, self._seed, self.gauss_next = state
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

    def jumpahead(self, n):
        """Act as if n calls to random() were made, but quickly.

        n is an int, greater than or equal to 0.

        Example use:  If you have 2 threads and know that each will
        consume no more than a million random numbers, create two Random
        objects r1 and r2, then do
            r2.setstate(r1.getstate())
            r2.jumpahead(1000000)
        Then r1 and r2 will use guaranteed-disjoint segments of the full
        period.
        """

        if not n >= 0:
            raise ValueError("n must be >= 0")
        x, y, z = self._seed
        x = int(x * pow(171, n, 30269)) % 30269
        y = int(y * pow(172, n, 30307)) % 30307
        z = int(z * pow(170, n, 30323)) % 30323
        self._seed = x, y, z

    def __whseed(self, x=0, y=0, z=0):
        """Set the Wichmann-Hill seed from (x, y, z).

        These must be integers in the range [0, 256).
        """

        if not type(x) == type(y) == type(z) == int:
            raise TypeError('seeds must be integers')
        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
            raise ValueError('seeds must be in range(0, 256)')
        if 0 == x == y == z:
            # Initialize from current time
            import time
            t = long(time.time() * 256)
            t = int((t&0xffffff) ^ (t>>24))
            t, x = divmod(t, 256)
            t, y = divmod(t, 256)
            t, z = divmod(t, 256)
        # Zero is a poor seed, so substitute 1
        self._seed = (x or 1, y or 1, z or 1)

        self.gauss_next = None

    def whseed(self, a=None):
        """Seed from hashable object's hash code.

        None or no argument seeds from current time.  It is not guaranteed
        that objects with distinct hash codes lead to distinct internal
        states.

        This is obsolete, provided for compatibility with the seed routine
        used prior to Python 2.1.  Use the .seed() method instead.
        """

        if a is None:
            self.__whseed()
            return
        a = hash(a)
        a, x = divmod(a, 256)
        a, y = divmod(a, 256)
        a, z = divmod(a, 256)
        x = (x + a) % 256 or 1
        y = (y + a) % 256 or 1
        z = (z + a) % 256 or 1
        self.__whseed(x, y, z)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates a long int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        if k != int(k):
            raise TypeError('number of bits should be an integer')
        bytes = (k + 7) // 8                    # bits / 8 and rounded up
        x = long(_hexlify(_urandom(bytes)), 16)
        return x >> (bytes * 8 - k)             # trim excess bits

    def _stub(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None
    seed = jumpahead = _stub

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print n, 'times', func.__name__
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print round(t1-t0, 3), 'sec,',
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print 'avg %g, stddev %g, min %g, max %g' % \
              (avg, stddev, smallest, largest)


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
getrandbits = _inst.getrandbits

if __name__ == '__main__':
    _test()
Name
Size
Permissions
Options
Demo
--
drwxr-xr-x
Doc
--
drwxr-xr-x
Tools
--
drwxr-xr-x
bsddb
--
drwxr-xr-x
compiler
--
drwxr-xr-x
config
--
drwxr-xr-x
ctypes
--
drwxr-xr-x
curses
--
drwxr-xr-x
distutils
--
drwxr-xr-x
email
--
drwxr-xr-x
encodings
--
drwxr-xr-x
ensurepip
--
drwxr-xr-x
hotshot
--
drwxr-xr-x
idlelib
--
drwxr-xr-x
importlib
--
drwxr-xr-x
json
--
drwxr-xr-x
lib-dynload
--
drwxr-xr-x
lib-tk
--
drwxr-xr-x
lib2to3
--
drwxr-xr-x
logging
--
drwxr-xr-x
multiprocessing
--
drwxr-xr-x
plat-linux2
--
drwxr-xr-x
pydoc_data
--
drwxr-xr-x
site-packages
--
drwxr-xr-x
sqlite3
--
drwxr-xr-x
test
--
drwxr-xr-x
unittest
--
drwxr-xr-x
wsgiref
--
drwxr-xr-x
xml
--
drwxr-xr-x
BaseHTTPServer.py
22.214 KB
-rw-r--r--
BaseHTTPServer.pyc
21.213 KB
-rw-r--r--
BaseHTTPServer.pyo
21.213 KB
-rw-r--r--
Bastion.py
5.609 KB
-rw-r--r--
Bastion.pyc
6.504 KB
-rw-r--r--
Bastion.pyo
6.504 KB
-rw-r--r--
CGIHTTPServer.py
12.782 KB
-rw-r--r--
CGIHTTPServer.pyc
10.76 KB
-rw-r--r--
CGIHTTPServer.pyo
10.76 KB
-rw-r--r--
ConfigParser.py
27.096 KB
-rw-r--r--
ConfigParser.pyc
24.622 KB
-rw-r--r--
ConfigParser.pyo
24.622 KB
-rw-r--r--
Cookie.py
25.916 KB
-rw-r--r--
Cookie.pyc
22.127 KB
-rw-r--r--
Cookie.pyo
22.127 KB
-rw-r--r--
DocXMLRPCServer.py
10.516 KB
-rw-r--r--
DocXMLRPCServer.pyc
9.956 KB
-rw-r--r--
DocXMLRPCServer.pyo
9.85 KB
-rw-r--r--
HTMLParser.py
16.769 KB
-rw-r--r--
HTMLParser.pyc
13.405 KB
-rw-r--r--
HTMLParser.pyo
13.107 KB
-rw-r--r--
MimeWriter.py
6.33 KB
-rw-r--r--
MimeWriter.pyc
7.191 KB
-rw-r--r--
MimeWriter.pyo
7.191 KB
-rw-r--r--
Queue.py
8.376 KB
-rw-r--r--
Queue.pyc
9.203 KB
-rw-r--r--
Queue.pyo
9.203 KB
-rw-r--r--
SimpleHTTPServer.py
7.81 KB
-rw-r--r--
SimpleHTTPServer.pyc
7.822 KB
-rw-r--r--
SimpleHTTPServer.pyo
7.822 KB
-rw-r--r--
SimpleXMLRPCServer.py
25.207 KB
-rw-r--r--
SimpleXMLRPCServer.pyc
22.327 KB
-rw-r--r--
SimpleXMLRPCServer.pyo
22.327 KB
-rw-r--r--
SocketServer.py
23.387 KB
-rw-r--r--
SocketServer.pyc
23.522 KB
-rw-r--r--
SocketServer.pyo
23.522 KB
-rw-r--r--
StringIO.py
10.412 KB
-rw-r--r--
StringIO.pyc
11.211 KB
-rw-r--r--
StringIO.pyo
11.211 KB
-rw-r--r--
UserDict.py
6.895 KB
-rw-r--r--
UserDict.pyc
9.483 KB
-rw-r--r--
UserDict.pyo
9.483 KB
-rw-r--r--
UserList.py
3.559 KB
-rw-r--r--
UserList.pyc
6.423 KB
-rw-r--r--
UserList.pyo
6.423 KB
-rw-r--r--
UserString.py
9.46 KB
-rwxr-xr-x
UserString.pyc
14.516 KB
-rw-r--r--
UserString.pyo
14.516 KB
-rw-r--r--
_LWPCookieJar.py
6.399 KB
-rw-r--r--
_LWPCookieJar.pyc
5.307 KB
-rw-r--r--
_LWPCookieJar.pyo
5.307 KB
-rw-r--r--
_MozillaCookieJar.py
5.661 KB
-rw-r--r--
_MozillaCookieJar.pyc
4.356 KB
-rw-r--r--
_MozillaCookieJar.pyo
4.318 KB
-rw-r--r--
__future__.py
4.277 KB
-rw-r--r--
__future__.pyc
4.124 KB
-rw-r--r--
__future__.pyo
4.124 KB
-rw-r--r--
__phello__.foo.py
0.063 KB
-rw-r--r--
__phello__.foo.pyc
0.122 KB
-rw-r--r--
__phello__.foo.pyo
0.122 KB
-rw-r--r--
_abcoll.py
18.183 KB
-rw-r--r--
_abcoll.pyc
25.08 KB
-rw-r--r--
_abcoll.pyo
25.08 KB
-rw-r--r--
_osx_support.py
18.652 KB
-rw-r--r--
_osx_support.pyc
11.482 KB
-rw-r--r--
_osx_support.pyo
11.482 KB
-rw-r--r--
_pyio.py
67.998 KB
-rw-r--r--
_pyio.pyc
63.185 KB
-rw-r--r--
_pyio.pyo
63.185 KB
-rw-r--r--
_strptime.py
20.242 KB
-rw-r--r--
_strptime.pyc
14.816 KB
-rw-r--r--
_strptime.pyo
14.816 KB
-rw-r--r--
_sysconfigdata.py
19.27 KB
-rw-r--r--
_sysconfigdata.pyc
22.43 KB
-rw-r--r--
_sysconfigdata.pyo
22.43 KB
-rw-r--r--
_threading_local.py
7.09 KB
-rw-r--r--
_threading_local.pyc
6.224 KB
-rw-r--r--
_threading_local.pyo
6.224 KB
-rw-r--r--
_weakrefset.py
5.772 KB
-rw-r--r--
_weakrefset.pyc
9.451 KB
-rw-r--r--
_weakrefset.pyo
9.451 KB
-rw-r--r--
abc.py
6.978 KB
-rw-r--r--
abc.pyc
5.999 KB
-rw-r--r--
abc.pyo
5.944 KB
-rw-r--r--
aifc.py
33.769 KB
-rw-r--r--
aifc.pyc
29.745 KB
-rw-r--r--
aifc.pyo
29.745 KB
-rw-r--r--
antigravity.py
0.059 KB
-rw-r--r--
antigravity.pyc
0.198 KB
-rw-r--r--
antigravity.pyo
0.198 KB
-rw-r--r--
anydbm.py
2.601 KB
-rw-r--r--
anydbm.pyc
2.734 KB
-rw-r--r--
anydbm.pyo
2.734 KB
-rw-r--r--
argparse.py
87.137 KB
-rw-r--r--
argparse.pyc
62.858 KB
-rw-r--r--
argparse.pyo
62.697 KB
-rw-r--r--
ast.py
11.528 KB
-rw-r--r--
ast.pyc
12.635 KB
-rw-r--r--
ast.pyo
12.635 KB
-rw-r--r--
asynchat.py
11.31 KB
-rw-r--r--
asynchat.pyc
8.604 KB
-rw-r--r--
asynchat.pyo
8.604 KB
-rw-r--r--
asyncore.py
20.452 KB
-rw-r--r--
asyncore.pyc
18.45 KB
-rw-r--r--
asyncore.pyo
18.45 KB
-rw-r--r--
atexit.py
1.665 KB
-rw-r--r--
atexit.pyc
2.151 KB
-rw-r--r--
atexit.pyo
2.151 KB
-rw-r--r--
audiodev.py
7.419 KB
-rw-r--r--
audiodev.pyc
8.271 KB
-rw-r--r--
audiodev.pyo
8.271 KB
-rw-r--r--
base64.py
11.529 KB
-rwxr-xr-x
base64.pyc
11.032 KB
-rw-r--r--
base64.pyo
11.032 KB
-rw-r--r--
bdb.py
21.205 KB
-rw-r--r--
bdb.pyc
18.653 KB
-rw-r--r--
bdb.pyo
18.653 KB
-rw-r--r--
binhex.py
14.354 KB
-rw-r--r--
binhex.pyc
15.098 KB
-rw-r--r--
binhex.pyo
15.098 KB
-rw-r--r--
bisect.py
2.534 KB
-rw-r--r--
bisect.pyc
2.999 KB
-rw-r--r--
bisect.pyo
2.999 KB
-rw-r--r--
cProfile.py
6.419 KB
-rwxr-xr-x
cProfile.pyc
6.245 KB
-rw-r--r--
cProfile.pyo
6.245 KB
-rw-r--r--
calendar.py
22.836 KB
-rw-r--r--
calendar.pyc
27.259 KB
-rw-r--r--
calendar.pyo
27.259 KB
-rw-r--r--
cgi.py
35.457 KB
-rwxr-xr-x
cgi.pyc
32.584 KB
-rw-r--r--
cgi.pyo
32.584 KB
-rw-r--r--
cgitb.py
11.89 KB
-rw-r--r--
cgitb.pyc
11.854 KB
-rw-r--r--
cgitb.pyo
11.854 KB
-rw-r--r--
chunk.py
5.292 KB
-rw-r--r--
chunk.pyc
5.471 KB
-rw-r--r--
chunk.pyo
5.471 KB
-rw-r--r--
cmd.py
14.674 KB
-rw-r--r--
cmd.pyc
13.71 KB
-rw-r--r--
cmd.pyo
13.71 KB
-rw-r--r--
code.py
9.95 KB
-rw-r--r--
code.pyc
10.092 KB
-rw-r--r--
code.pyo
10.092 KB
-rw-r--r--
codecs.py
35.296 KB
-rw-r--r--
codecs.pyc
35.961 KB
-rw-r--r--
codecs.pyo
35.961 KB
-rw-r--r--
codeop.py
5.858 KB
-rw-r--r--
codeop.pyc
6.442 KB
-rw-r--r--
codeop.pyo
6.442 KB
-rw-r--r--
collections.py
27.146 KB
-rw-r--r--
collections.pyc
25.55 KB
-rw-r--r--
collections.pyo
25.5 KB
-rw-r--r--
colorsys.py
3.604 KB
-rw-r--r--
colorsys.pyc
3.897 KB
-rw-r--r--
colorsys.pyo
3.897 KB
-rw-r--r--
commands.py
2.485 KB
-rw-r--r--
commands.pyc
2.411 KB
-rw-r--r--
commands.pyo
2.411 KB
-rw-r--r--
compileall.py
7.581 KB
-rw-r--r--
compileall.pyc
6.853 KB
-rw-r--r--
compileall.pyo
6.853 KB
-rw-r--r--
contextlib.py
4.32 KB
-rw-r--r--
contextlib.pyc
4.35 KB
-rw-r--r--
contextlib.pyo
4.35 KB
-rw-r--r--
cookielib.py
63.951 KB
-rw-r--r--
cookielib.pyc
53.442 KB
-rw-r--r--
cookielib.pyo
53.259 KB
-rw-r--r--
copy.py
11.263 KB
-rw-r--r--
copy.pyc
11.885 KB
-rw-r--r--
copy.pyo
11.795 KB
-rw-r--r--
copy_reg.py
6.811 KB
-rw-r--r--
copy_reg.pyc
5.046 KB
-rw-r--r--
copy_reg.pyo
5.003 KB
-rw-r--r--
crypt.py
2.238 KB
-rw-r--r--
crypt.pyc
2.891 KB
-rw-r--r--
crypt.pyo
2.891 KB
-rw-r--r--
csv.py
16.316 KB
-rw-r--r--
csv.pyc
13.19 KB
-rw-r--r--
csv.pyo
13.19 KB
-rw-r--r--
dbhash.py
0.486 KB
-rw-r--r--
dbhash.pyc
0.701 KB
-rw-r--r--
dbhash.pyo
0.701 KB
-rw-r--r--
decimal.py
216.731 KB
-rw-r--r--
decimal.pyc
168.12 KB
-rw-r--r--
decimal.pyo
168.12 KB
-rw-r--r--
difflib.py
80.396 KB
-rw-r--r--
difflib.pyc
60.447 KB
-rw-r--r--
difflib.pyo
60.397 KB
-rw-r--r--
dircache.py
1.1 KB
-rw-r--r--
dircache.pyc
1.539 KB
-rw-r--r--
dircache.pyo
1.539 KB
-rw-r--r--
dis.py
6.347 KB
-rw-r--r--
dis.pyc
6.082 KB
-rw-r--r--
dis.pyo
6.082 KB
-rw-r--r--
doctest.py
102.632 KB
-rw-r--r--
doctest.pyc
81.677 KB
-rw-r--r--
doctest.pyo
81.396 KB
-rw-r--r--
dumbdbm.py
8.927 KB
-rw-r--r--
dumbdbm.pyc
6.588 KB
-rw-r--r--
dumbdbm.pyo
6.588 KB
-rw-r--r--
dummy_thread.py
4.314 KB
-rw-r--r--
dummy_thread.pyc
5.268 KB
-rw-r--r--
dummy_thread.pyo
5.268 KB
-rw-r--r--
dummy_threading.py
2.738 KB
-rw-r--r--
dummy_threading.pyc
1.255 KB
-rw-r--r--
dummy_threading.pyo
1.255 KB
-rw-r--r--
filecmp.py
9.363 KB
-rw-r--r--
filecmp.pyc
9.396 KB
-rw-r--r--
filecmp.pyo
9.396 KB
-rw-r--r--
fileinput.py
13.424 KB
-rw-r--r--
fileinput.pyc
14.16 KB
-rw-r--r--
fileinput.pyo
14.16 KB
-rw-r--r--
fnmatch.py
3.237 KB
-rw-r--r--
fnmatch.pyc
3.529 KB
-rw-r--r--
fnmatch.pyo
3.529 KB
-rw-r--r--
formatter.py
14.562 KB
-rw-r--r--
formatter.pyc
18.729 KB
-rw-r--r--
formatter.pyo
18.729 KB
-rw-r--r--
fpformat.py
4.621 KB
-rw-r--r--
fpformat.pyc
4.593 KB
-rw-r--r--
fpformat.pyo
4.593 KB
-rw-r--r--
fractions.py
21.865 KB
-rw-r--r--
fractions.pyc
19.249 KB
-rw-r--r--
fractions.pyo
19.249 KB
-rw-r--r--
ftplib.py
37.651 KB
-rw-r--r--
ftplib.pyc
34.12 KB
-rw-r--r--
ftplib.pyo
34.12 KB
-rw-r--r--
functools.py
4.693 KB
-rw-r--r--
functools.pyc
6.474 KB
-rw-r--r--
functools.pyo
6.474 KB
-rw-r--r--
genericpath.py
3.126 KB
-rw-r--r--
genericpath.pyc
3.435 KB
-rw-r--r--
genericpath.pyo
3.435 KB
-rw-r--r--
getopt.py
7.147 KB
-rw-r--r--
getopt.pyc
6.498 KB
-rw-r--r--
getopt.pyo
6.454 KB
-rw-r--r--
getpass.py
5.433 KB
-rw-r--r--
getpass.pyc
4.633 KB
-rw-r--r--
getpass.pyo
4.633 KB
-rw-r--r--
gettext.py
22.135 KB
-rw-r--r--
gettext.pyc
17.582 KB
-rw-r--r--
gettext.pyo
17.582 KB
-rw-r--r--
glob.py
3.041 KB
-rw-r--r--
glob.pyc
2.874 KB
-rw-r--r--
glob.pyo
2.874 KB
-rw-r--r--
gzip.py
18.582 KB
-rw-r--r--
gzip.pyc
14.879 KB
-rw-r--r--
gzip.pyo
14.879 KB
-rw-r--r--
hashlib.py
7.657 KB
-rw-r--r--
hashlib.pyc
6.757 KB
-rw-r--r--
hashlib.pyo
6.757 KB
-rw-r--r--
heapq.py
17.866 KB
-rw-r--r--
heapq.pyc
14.223 KB
-rw-r--r--
heapq.pyo
14.223 KB
-rw-r--r--
hmac.py
4.48 KB
-rw-r--r--
hmac.pyc
4.436 KB
-rw-r--r--
hmac.pyo
4.436 KB
-rw-r--r--
htmlentitydefs.py
17.633 KB
-rw-r--r--
htmlentitydefs.pyc
6.218 KB
-rw-r--r--
htmlentitydefs.pyo
6.218 KB
-rw-r--r--
htmllib.py
12.567 KB
-rw-r--r--
htmllib.pyc
19.833 KB
-rw-r--r--
htmllib.pyo
19.833 KB
-rw-r--r--
httplib.py
52.057 KB
-rw-r--r--
httplib.pyc
37.816 KB
-rw-r--r--
httplib.pyo
37.637 KB
-rw-r--r--
ihooks.py
18.541 KB
-rw-r--r--
ihooks.pyc
20.871 KB
-rw-r--r--
ihooks.pyo
20.871 KB
-rw-r--r--
imaplib.py
47.232 KB
-rw-r--r--
imaplib.pyc
43.956 KB
-rw-r--r--
imaplib.pyo
41.318 KB
-rw-r--r--
imghdr.py
3.458 KB
-rw-r--r--
imghdr.pyc
4.725 KB
-rw-r--r--
imghdr.pyo
4.725 KB
-rw-r--r--
imputil.py
25.16 KB
-rw-r--r--
imputil.pyc
15.257 KB
-rw-r--r--
imputil.pyo
15.083 KB
-rw-r--r--
inspect.py
42 KB
-rw-r--r--
inspect.pyc
39.286 KB
-rw-r--r--
inspect.pyo
39.286 KB
-rw-r--r--
io.py
3.244 KB
-rw-r--r--
io.pyc
3.505 KB
-rw-r--r--
io.pyo
3.505 KB
-rw-r--r--
keyword.py
1.948 KB
-rwxr-xr-x
keyword.pyc
2.056 KB
-rw-r--r--
keyword.pyo
2.056 KB
-rw-r--r--
linecache.py
3.933 KB
-rw-r--r--
linecache.pyc
3.195 KB
-rw-r--r--
linecache.pyo
3.195 KB
-rw-r--r--
locale.py
100.424 KB
-rw-r--r--
locale.pyc
55.283 KB
-rw-r--r--
locale.pyo
55.283 KB
-rw-r--r--
macpath.py
6.142 KB
-rw-r--r--
macpath.pyc
7.501 KB
-rw-r--r--
macpath.pyo
7.501 KB
-rw-r--r--
macurl2path.py
2.667 KB
-rw-r--r--
macurl2path.pyc
2.191 KB
-rw-r--r--
macurl2path.pyo
2.191 KB
-rw-r--r--
mailbox.py
79.336 KB
-rw-r--r--
mailbox.pyc
74.919 KB
-rw-r--r--
mailbox.pyo
74.873 KB
-rw-r--r--
mailcap.py
8.207 KB
-rw-r--r--
mailcap.pyc
7.769 KB
-rw-r--r--
mailcap.pyo
7.769 KB
-rw-r--r--
markupbase.py
14.3 KB
-rw-r--r--
markupbase.pyc
9.05 KB
-rw-r--r--
markupbase.pyo
8.858 KB
-rw-r--r--
md5.py
0.35 KB
-rw-r--r--
md5.pyc
0.369 KB
-rw-r--r--
md5.pyo
0.369 KB
-rw-r--r--
mhlib.py
32.65 KB
-rw-r--r--
mhlib.pyc
32.985 KB
-rw-r--r--
mhlib.pyo
32.985 KB
-rw-r--r--
mimetools.py
7 KB
-rw-r--r--
mimetools.pyc
8.009 KB
-rw-r--r--
mimetools.pyo
8.009 KB
-rw-r--r--
mimetypes.py
20.535 KB
-rw-r--r--
mimetypes.pyc
18.056 KB
-rw-r--r--
mimetypes.pyo
18.056 KB
-rw-r--r--
mimify.py
14.668 KB
-rwxr-xr-x
mimify.pyc
11.72 KB
-rw-r--r--
mimify.pyo
11.72 KB
-rw-r--r--
modulefinder.py
23.888 KB
-rw-r--r--
modulefinder.pyc
18.679 KB
-rw-r--r--
modulefinder.pyo
18.599 KB
-rw-r--r--
multifile.py
4.707 KB
-rw-r--r--
multifile.pyc
5.293 KB
-rw-r--r--
multifile.pyo
5.252 KB
-rw-r--r--
mutex.py
1.834 KB
-rw-r--r--
mutex.pyc
2.457 KB
-rw-r--r--
mutex.pyo
2.457 KB
-rw-r--r--
netrc.py
5.75 KB
-rw-r--r--
netrc.pyc
4.604 KB
-rw-r--r--
netrc.pyo
4.604 KB
-rw-r--r--
new.py
0.596 KB
-rw-r--r--
new.pyc
0.842 KB
-rw-r--r--
new.pyo
0.842 KB
-rw-r--r--
nntplib.py
20.967 KB
-rw-r--r--
nntplib.pyc
20.551 KB
-rw-r--r--
nntplib.pyo
20.551 KB
-rw-r--r--
ntpath.py
18.974 KB
-rw-r--r--
ntpath.pyc
12.821 KB
-rw-r--r--
ntpath.pyo
12.821 KB
-rw-r--r--
nturl2path.py
2.362 KB
-rw-r--r--
nturl2path.pyc
1.772 KB
-rw-r--r--
nturl2path.pyo
1.772 KB
-rw-r--r--
numbers.py
10.077 KB
-rw-r--r--
numbers.pyc
13.684 KB
-rw-r--r--
numbers.pyo
13.684 KB
-rw-r--r--
opcode.py
5.346 KB
-rw-r--r--
opcode.pyc
6.001 KB
-rw-r--r--
opcode.pyo
6.001 KB
-rw-r--r--
optparse.py
59.769 KB
-rw-r--r--
optparse.pyc
52.631 KB
-rw-r--r--
optparse.pyo
52.55 KB
-rw-r--r--
os.py
25.303 KB
-rw-r--r--
os.pyc
25.087 KB
-rw-r--r--
os.pyo
25.087 KB
-rw-r--r--
os2emxpath.py
4.526 KB
-rw-r--r--
os2emxpath.pyc
4.419 KB
-rw-r--r--
os2emxpath.pyo
4.419 KB
-rw-r--r--
pdb.doc
7.729 KB
-rw-r--r--
pdb.py
45.018 KB
-rwxr-xr-x
pdb.pyc
42.646 KB
-rw-r--r--
pdb.pyo
42.646 KB
-rw-r--r--
pickle.py
44.423 KB
-rw-r--r--
pickle.pyc
37.656 KB
-rw-r--r--
pickle.pyo
37.465 KB
-rw-r--r--
pickletools.py
72.776 KB
-rw-r--r--
pickletools.pyc
55.695 KB
-rw-r--r--
pickletools.pyo
54.854 KB
-rw-r--r--
pipes.py
9.357 KB
-rw-r--r--
pipes.pyc
9.09 KB
-rw-r--r--
pipes.pyo
9.09 KB
-rw-r--r--
pkgutil.py
19.769 KB
-rw-r--r--
pkgutil.pyc
18.515 KB
-rw-r--r--
pkgutil.pyo
18.515 KB
-rw-r--r--
platform.py
51.563 KB
-rwxr-xr-x
platform.pyc
37.081 KB
-rw-r--r--
platform.pyo
37.081 KB
-rw-r--r--
plistlib.py
15.439 KB
-rw-r--r--
plistlib.pyc
19.495 KB
-rw-r--r--
plistlib.pyo
19.411 KB
-rw-r--r--
popen2.py
8.219 KB
-rw-r--r--
popen2.pyc
8.813 KB
-rw-r--r--
popen2.pyo
8.772 KB
-rw-r--r--
poplib.py
12.523 KB
-rw-r--r--
poplib.pyc
13.032 KB
-rw-r--r--
poplib.pyo
13.032 KB
-rw-r--r--
posixfile.py
7.815 KB
-rw-r--r--
posixfile.pyc
7.473 KB
-rw-r--r--
posixfile.pyo
7.473 KB
-rw-r--r--
posixpath.py
13.958 KB
-rw-r--r--
posixpath.pyc
11.193 KB
-rw-r--r--
posixpath.pyo
11.193 KB
-rw-r--r--
pprint.py
11.501 KB
-rw-r--r--
pprint.pyc
9.955 KB
-rw-r--r--
pprint.pyo
9.782 KB
-rw-r--r--
profile.py
22.247 KB
-rwxr-xr-x
profile.pyc
16.07 KB
-rw-r--r--
profile.pyo
15.829 KB
-rw-r--r--
pstats.py
26.086 KB
-rw-r--r--
pstats.pyc
24.427 KB
-rw-r--r--
pstats.pyo
24.427 KB
-rw-r--r--
pty.py
4.939 KB
-rw-r--r--
pty.pyc
4.85 KB
-rw-r--r--
pty.pyo
4.85 KB
-rw-r--r--
py_compile.py
5.797 KB
-rw-r--r--
py_compile.pyc
6.277 KB
-rw-r--r--
py_compile.pyo
6.277 KB
-rw-r--r--
pyclbr.py
13.074 KB
-rw-r--r--
pyclbr.pyc
9.425 KB
-rw-r--r--
pyclbr.pyo
9.425 KB
-rw-r--r--
pydoc.py
93.495 KB
-rwxr-xr-x
pydoc.pyc
90.178 KB
-rw-r--r--
pydoc.pyo
90.115 KB
-rw-r--r--
quopri.py
6.805 KB
-rwxr-xr-x
quopri.pyc
6.42 KB
-rw-r--r--
quopri.pyo
6.42 KB
-rw-r--r--
random.py
31.696 KB
-rw-r--r--
random.pyc
25.102 KB
-rw-r--r--
random.pyo
25.102 KB
-rw-r--r--
re.py
13.108 KB
-rw-r--r--
re.pyc
13.099 KB
-rw-r--r--
re.pyo
13.099 KB
-rw-r--r--
repr.py
4.195 KB
-rw-r--r--
repr.pyc
5.259 KB
-rw-r--r--
repr.pyo
5.259 KB
-rw-r--r--
rexec.py
19.676 KB
-rw-r--r--
rexec.pyc
23.249 KB
-rw-r--r--
rexec.pyo
23.249 KB
-rw-r--r--
rfc822.py
32.756 KB
-rw-r--r--
rfc822.pyc
31.067 KB
-rw-r--r--
rfc822.pyo
31.067 KB
-rw-r--r--
rlcompleter.py
5.851 KB
-rw-r--r--
rlcompleter.pyc
5.936 KB
-rw-r--r--
rlcompleter.pyo
5.936 KB
-rw-r--r--
robotparser.py
7.515 KB
-rw-r--r--
robotparser.pyc
7.815 KB
-rw-r--r--
robotparser.pyo
7.815 KB
-rw-r--r--
runpy.py
10.821 KB
-rw-r--r--
runpy.pyc
8.597 KB
-rw-r--r--
runpy.pyo
8.597 KB
-rw-r--r--
sched.py
4.969 KB
-rw-r--r--
sched.pyc
4.877 KB
-rw-r--r--
sched.pyo
4.877 KB
-rw-r--r--
sets.py
18.604 KB
-rw-r--r--
sets.pyc
16.499 KB
-rw-r--r--
sets.pyo
16.499 KB
-rw-r--r--
sgmllib.py
17.465 KB
-rw-r--r--
sgmllib.pyc
15.074 KB
-rw-r--r--
sgmllib.pyo
15.074 KB
-rw-r--r--
sha.py
0.384 KB
-rw-r--r--
sha.pyc
0.411 KB
-rw-r--r--
sha.pyo
0.411 KB
-rw-r--r--
shelve.py
7.986 KB
-rw-r--r--
shelve.pyc
10.016 KB
-rw-r--r--
shelve.pyo
10.016 KB
-rw-r--r--
shlex.py
10.902 KB
-rw-r--r--
shlex.pyc
7.381 KB
-rw-r--r--
shlex.pyo
7.381 KB
-rw-r--r--
shutil.py
19.405 KB
-rw-r--r--
shutil.pyc
18.808 KB
-rw-r--r--
shutil.pyo
18.808 KB
-rw-r--r--
site.py
20.797 KB
-rw-r--r--
site.pyc
20.299 KB
-rw-r--r--
site.pyo
20.299 KB
-rw-r--r--
smtpd.py
18.107 KB
-rwxr-xr-x
smtpd.pyc
15.511 KB
-rw-r--r--
smtpd.pyo
15.511 KB
-rw-r--r--
smtplib.py
31.381 KB
-rwxr-xr-x
smtplib.pyc
29.594 KB
-rw-r--r--
smtplib.pyo
29.594 KB
-rw-r--r--
sndhdr.py
5.833 KB
-rw-r--r--
sndhdr.pyc
7.188 KB
-rw-r--r--
sndhdr.pyo
7.188 KB
-rw-r--r--
socket.py
20.132 KB
-rw-r--r--
socket.pyc
15.773 KB
-rw-r--r--
socket.pyo
15.689 KB
-rw-r--r--
sre.py
0.375 KB
-rw-r--r--
sre.pyc
0.507 KB
-rw-r--r--
sre.pyo
0.507 KB
-rw-r--r--
sre_compile.py
19.358 KB
-rw-r--r--
sre_compile.pyc
12.266 KB
-rw-r--r--
sre_compile.pyo
12.113 KB
-rw-r--r--
sre_constants.py
7.028 KB
-rw-r--r--
sre_constants.pyc
6.05 KB
-rw-r--r--
sre_constants.pyo
6.05 KB
-rw-r--r--
sre_parse.py
29.98 KB
-rw-r--r--
sre_parse.pyc
20.66 KB
-rw-r--r--
sre_parse.pyo
20.66 KB
-rw-r--r--
ssl.py
38.389 KB
-rw-r--r--
ssl.pyc
31.949 KB
-rw-r--r--
ssl.pyo
31.949 KB
-rw-r--r--
stat.py
1.799 KB
-rw-r--r--
stat.pyc
2.687 KB
-rw-r--r--
stat.pyo
2.687 KB
-rw-r--r--
statvfs.py
0.877 KB
-rw-r--r--
statvfs.pyc
0.605 KB
-rw-r--r--
statvfs.pyo
0.605 KB
-rw-r--r--
string.py
21.043 KB
-rw-r--r--
string.pyc
19.979 KB
-rw-r--r--
string.pyo
19.979 KB
-rw-r--r--
stringold.py
12.157 KB
-rw-r--r--
stringold.pyc
12.255 KB
-rw-r--r--
stringold.pyo
12.255 KB
-rw-r--r--
stringprep.py
13.205 KB
-rw-r--r--
stringprep.pyc
14.147 KB
-rw-r--r--
stringprep.pyo
14.077 KB
-rw-r--r--
struct.py
0.08 KB
-rw-r--r--
struct.pyc
0.233 KB
-rw-r--r--
struct.pyo
0.233 KB
-rw-r--r--
subprocess.py
49.336 KB
-rw-r--r--
subprocess.pyc
31.639 KB
-rw-r--r--
subprocess.pyo
31.639 KB
-rw-r--r--
sunau.py
16.818 KB
-rw-r--r--
sunau.pyc
17.963 KB
-rw-r--r--
sunau.pyo
17.963 KB
-rw-r--r--
sunaudio.py
1.366 KB
-rw-r--r--
sunaudio.pyc
1.94 KB
-rw-r--r--
sunaudio.pyo
1.94 KB
-rw-r--r--
symbol.py
2.009 KB
-rwxr-xr-x
symbol.pyc
2.955 KB
-rw-r--r--
symbol.pyo
2.955 KB
-rw-r--r--
symtable.py
7.263 KB
-rw-r--r--
symtable.pyc
11.51 KB
-rw-r--r--
symtable.pyo
11.382 KB
-rw-r--r--
sysconfig.py
22.316 KB
-rw-r--r--
sysconfig.pyc
17.4 KB
-rw-r--r--
sysconfig.pyo
17.4 KB
-rw-r--r--
tabnanny.py
11.073 KB
-rwxr-xr-x
tabnanny.pyc
8.054 KB
-rw-r--r--
tabnanny.pyo
8.054 KB
-rw-r--r--
tarfile.py
88.53 KB
-rw-r--r--
tarfile.pyc
74.407 KB
-rw-r--r--
tarfile.pyo
74.407 KB
-rw-r--r--
telnetlib.py
26.402 KB
-rw-r--r--
telnetlib.pyc
22.611 KB
-rw-r--r--
telnetlib.pyo
22.611 KB
-rw-r--r--
tempfile.py
19.089 KB
-rw-r--r--
tempfile.pyc
19.867 KB
-rw-r--r--
tempfile.pyo
19.867 KB
-rw-r--r--
textwrap.py
16.875 KB
-rw-r--r--
textwrap.pyc
11.813 KB
-rw-r--r--
textwrap.pyo
11.724 KB
-rw-r--r--
this.py
0.979 KB
-rw-r--r--
this.pyc
1.191 KB
-rw-r--r--
this.pyo
1.191 KB
-rw-r--r--
threading.py
46.267 KB
-rw-r--r--
threading.pyc
41.725 KB
-rw-r--r--
threading.pyo
39.602 KB
-rw-r--r--
timeit.py
12.491 KB
-rwxr-xr-x
timeit.pyc
11.897 KB
-rw-r--r--
timeit.pyo
11.897 KB
-rw-r--r--
toaiff.py
3.068 KB
-rw-r--r--
toaiff.pyc
3.033 KB
-rw-r--r--
toaiff.pyo
3.033 KB
-rw-r--r--
token.py
2.854 KB
-rw-r--r--
token.pyc
3.727 KB
-rw-r--r--
token.pyo
3.727 KB
-rw-r--r--
tokenize.py
17.073 KB
-rw-r--r--
tokenize.pyc
14.165 KB
-rw-r--r--
tokenize.pyo
14.11 KB
-rw-r--r--
trace.py
29.19 KB
-rwxr-xr-x
trace.pyc
22.259 KB
-rw-r--r--
trace.pyo
22.197 KB
-rw-r--r--
traceback.py
11.021 KB
-rw-r--r--
traceback.pyc
11.405 KB
-rw-r--r--
traceback.pyo
11.405 KB
-rw-r--r--
tty.py
0.858 KB
-rw-r--r--
tty.pyc
1.286 KB
-rw-r--r--
tty.pyo
1.286 KB
-rw-r--r--
types.py
2.045 KB
-rw-r--r--
types.pyc
2.661 KB
-rw-r--r--
types.pyo
2.661 KB
-rw-r--r--
urllib.py
58.816 KB
-rw-r--r--
urllib.pyc
50.04 KB
-rw-r--r--
urllib.pyo
49.947 KB
-rw-r--r--
urllib2.py
51.31 KB
-rw-r--r--
urllib2.pyc
46.193 KB
-rw-r--r--
urllib2.pyo
46.101 KB
-rw-r--r--
urlparse.py
19.981 KB
-rw-r--r--
urlparse.pyc
17.593 KB
-rw-r--r--
urlparse.pyo
17.593 KB
-rw-r--r--
user.py
1.589 KB
-rw-r--r--
user.pyc
1.684 KB
-rw-r--r--
user.pyo
1.684 KB
-rw-r--r--
uu.py
6.54 KB
-rwxr-xr-x
uu.pyc
4.287 KB
-rw-r--r--
uu.pyo
4.287 KB
-rw-r--r--
uuid.py
22.979 KB
-rw-r--r--
uuid.pyc
22.818 KB
-rw-r--r--
uuid.pyo
22.705 KB
-rw-r--r--
warnings.py
14.476 KB
-rw-r--r--
warnings.pyc
13.193 KB
-rw-r--r--
warnings.pyo
12.423 KB
-rw-r--r--
wave.py
18.146 KB
-rw-r--r--
wave.pyc
19.544 KB
-rw-r--r--
wave.pyo
19.403 KB
-rw-r--r--
weakref.py
14.482 KB
-rw-r--r--
weakref.pyc
16.056 KB
-rw-r--r--
weakref.pyo
16.056 KB
-rw-r--r--
webbrowser.py
22.192 KB
-rwxr-xr-x
webbrowser.pyc
19.287 KB
-rw-r--r--
webbrowser.pyo
19.243 KB
-rw-r--r--
whichdb.py
3.3 KB
-rw-r--r--
whichdb.pyc
2.188 KB
-rw-r--r--
whichdb.pyo
2.188 KB
-rw-r--r--
wsgiref.egg-info
0.183 KB
-rw-r--r--
xdrlib.py
5.927 KB
-rw-r--r--
xdrlib.pyc
9.67 KB
-rw-r--r--
xdrlib.pyo
9.67 KB
-rw-r--r--
xmllib.py
34.048 KB
-rw-r--r--
xmllib.pyc
26.219 KB
-rw-r--r--
xmllib.pyo
26.219 KB
-rw-r--r--
xmlrpclib.py
50.914 KB
-rw-r--r--
xmlrpclib.pyc
43.072 KB
-rw-r--r--
xmlrpclib.pyo
42.893 KB
-rw-r--r--
zipfile.py
58.083 KB
-rw-r--r--
zipfile.pyc
41.149 KB
-rw-r--r--
zipfile.pyo
41.149 KB
-rw-r--r--